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Abstract Micro UAVs are receiving a great deal of attention in many diverse ap-
plications. In this paper, we are interested in a unique application, surveillance for
maintenance of large infrastructure assets such as dams and penstocks, where the
goal is to periodically inspect and map the structure to detect features that might
indicate the potential for failures. Availability of architecture drawings of these con-
structions makes the mapping problem easier. However large buildings with fea-
tureless geometries pose a significant problem since it is difficult to design a robust
localization algorithm for inspection operations. In this paper we show how a small
quadrotor equipped with minimal sensors can be used for inspection of tunnel-like
environments such as seen in dam penstocks. Penstocks in particular lack features
and do not provide adequate structure for robot localization, especially along the
tunnel axis. We develop a Rao-Blackwellized particle filter based localization al-
gorithm which uses a derivative of the ICP for integrating laser measurements and
IMU for short-to-medium range pose estimation. To our knowledge, this is the only
study in the literature focusing on localization and autonomous control of a UAV in
3-D, featureless tunnel-like environments. We show the success of our work with
results from real experiments.

1 Introduction

Recently, micro UAVs have attracted significant attention in a variety of civilian
applications due to their low cost and superior mobility. One possible application is
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the use UAVs in inspection of large buildings such as dams and penstocks. Penstocks
are constructions that require regular maintenance, and this in turn requires visual
inspection of the interior. However penstocks are dark, long and featureless tunnels
that slope steeply down hillsides. Because of this, it is hard for humans to climb
up penstocks and perform visual inspection. We propose, as an alternative, the use
of quadrotors equipped with minimal sensors that can fly through the tunnels and
collect data for remote inspection.

In order to reduce the operator workload, we require a high level of autonomy of
the quadrotor. This in turn requires that the robot is able to localize itself with respect
to features in the environment. In our case, we are given engineering drawings of the
penstock, which can be converted into a map of the environment. Hence we focus
on solving the problem of pose estimation (localization) and autonomous control in
penstocks (tunnel-like) buildings. This work allows us to build autonomous UAVs
that can collect imagery from inside penstocks for inspection with only high-level
user commands.

Fig. 1 A quadrotor flying inside a penstock at
Allatoona Dam, GA. Lighting is provided by a
portable spot light. The quadrotor is equipped
with a 1.6 GHz Atom Intel processor, Hokuyo
[2] laser scanner and an IMU unit. Note that the
installation of lights for illuminating the entire
tunnel is impractical. Therefore, we equip our
quadrotor with LED lights as shown in the figure.

Penstocks are almost perfectly cylin-
drical in cross section, and have two
long, non-parallel, straight portions as
shown in Fig. 2. In most penstocks, the
first portion is on a horizontal plane and
the second part slopes upwards. The
interior of the penstock is built with
rectangular shaped steel plates of ap-
proximately 6 square meters each bent
into a cylindrical geometry. Using the
given engineering drawings (the map),
IMU data and scanner readings, it is al-
ways possible to determine the orienta-
tion, height and lateral position of the
quadrotor. However the position along
the tunnel axis cannot be always de-
rived due to the special geometry of the
map and the available sensors. For ex-
ample, when the distance between the
robot and the junction of the tunnel
is greater than the maximum measure-
ment range of the laser scanner, the position along the tunnel cannot be determined.
However, during the transition between the horizontal and inclined portions of the
tunnel, scanner readings show significant differences which can help in localizing
the robot along the axis of the tunnel at that particular region.

We stress that it is difficult for ground robots to operate in the tunnel. While a
slope of 23 degrees (see Fig. 2) can be easily negotiated by tracked vehicles, the
tunnel is very slippery and smooth and it is difficult to use vehicles that require
traction in the tunnel. Furthermore, since the tunnel is not illuminated, inspection
of ceilings and walls can be difficult and may require auxiliary lighting equipment
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which can be heavy and require a lot of power. Fortunately, since our quadrotor can
fly close to the walls (and the ceiling) it can use energy efficient LED lights and
obtain illumination for collecting imagery. In addition to lights, the platform can be
equipped with different inspection sensors such as infrared cameras.
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Fig. 2 Side view of a representative penstock
(exact diameter and slope from the Carter Dam
penstock).

As shown in Fig. 1, we customize a
Pelican quadrotor by Ascending Tech-
nologies [1]. The robot is equipped
with a 1.6 GHz Atom Intel processor, a
Hokuyo [2] laser scanner, an IMU unit
and LED lights (Fig. 3).

A hallmark reference [7] introduced
the framework of Monte Carlo Local-
ization (MCL). Variants of such local-
ization algorithms can be seen for mu-
seum guide robots [21] , human oper-
ated backpack [16] and robot with 3-D laser scans [15]. However, the highly sym-
metric and feature-less tunnel environment poses problems for existing localization
algorithms. Furthermore, processing a large amount of data using low power, light
weight on-board computer proves to be challenging. Also, algorithms relying on
GPS are not practical for quadrotors flying inside a tunnel.

Fig. 3 Our quadrotor prototype equipped with
a Hokuyo laser scanner, on-board IMU and two
flash lights. A 3-D printed laser mount redirects
some of the laser beams upward and downward.

There is also extensive literature on
localization using cameras. [3] fuses
stereo vision, GPS, and IMU to per-
form outdoor localization. In another
outdoor localization study, [14] tests
image-based localization with wide an-
gle cameras. Scale-invariant features
are used in [19] to both localize and
build 3D maps of office environments.
However, it is hard to apply this method
in real-time due to the limited on-
board computation. Further, none of the
above approaches will work in a pen-
stock due to poor lighting conditions.
In our case, although we use lighting,
we need it only for detecting rust and cracking in the interior surface and not for
localization.

The rest of the paper is organized as follows: We start by reviewing basic back-
ground in Section 2. We then present our system for localization of a quadrotor in
the penstock in Section 3. The key contributions in this paper are the novel mea-
surement models those are designed based on the unique geometry of the penstock
and semi-autonomous operation in featureless tunnels. These are both presented in
Section 3. Finally, field experimental results are presented in Section 4.
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2 Background

2.1 Quadrotor Dynamics
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Fig. 4 Coordinate frame definitions of quadro-
tor. Due to the manufacturer, gyroscope and ac-
celerometer has different orientations which are
shown with subscripts of gyro and acc. And body
frame is denoted by the subscript quad. Dot in a
circle means a vector pointing out of the paper
plane and an × means the opposite [17].

Quadrotors are basically helicopters
with four propellers located at corners
of a square shape. A schematic of a
quadrotor is given in Fig. 4. Each pro-
peller is located at equal distances from
the geometric center of the quadrotor.
Motors mounted on opposite sides ro-
tate in the same direction, while the
others in the opposite direction. Ideally,
while the quadrotor is stationary, mo-
ments due to the propellers rotating in
opposite directions cancel each other so
that the yaw is kept constant.

As the standard reference triad
(SRT) for inertial frame, we use
{x̂W , ŷW , ẑW} basis vectors. Then a
vector in this frame is represented by
the vector

[
xW , yW , zW

]T . Whereas
SRT of the body frame is defined with
the basis vectors {x̂B, ŷB, ẑB} and a
vector in this frame is represented as[

xB, yB, zB
]T . x̂B is the heading di-

rection of the quadrotor which can be
selected arbitrarily. ẑB is preferably selected as the upwards direction when the
quadrotor is hovering and ẑW is selected to be pointing in the opposite direction
to the gravitation (see Fig. 4 and its caption for illustration). Rotation between these
two frames is carried through multiplication with a rotation matrix R ∈ SO(3) and
denoted by BRW . Subscript is the frame from which the vector will be transformed
and the pre-superscript is the goal frame.

We use Z−X −Y Euler angles to represent rotation from world to body frame
[18]. Yaw, pitch and roll angles are denoted as ψ , θ and φ respectively. Angular
velocity in the body frame is denoted by the vector

[
p, q, r

]B
We refer to the work by Mellinger [18] where detailed derivations of dynamic

equations are given. They also linearize about the hover state and present a linear
controller based on this model.
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2.2 Robot Localization

Robot localization, environment mapping and the merging of these two problems,
Simultaneous Localization and Mapping (SLAM), has been studied extensively
[4, 5, 8, 9, 20, 21]. Filtering based approaches are commonly used for solving the
localization problem. Two mostly used approaches are based on the Kalman filter
and the particle filter.

For systems that satisfy the Gaussian uncertainty model, the Kalman filter and
its nonlinear variants (referred to as KF from this point on) yield efficient and
robust results. We choose the Unscented Kalman Filter (instead of the standard
Kalman filter) due to its ability to approximate the propagation of Gaussian random
vectors through nonlinear functions via the propagation of stochastic linearization
points [20].

On the other hand, there are many systems with multi-modal, widely spread,
and other uncertainty models that are cannot be modeled as Gaussian distributions.
For such distributions, the nonparametric particle filter-based approach and variants
(referred to as PF from this point on), also known as Monte Carlo methods [7, 21],
provide approximate representations of arbitrary probabilistic distributions. They
are more powerful compared to the the parametric KF-based approaches. However,
for systems with relatively large number of degrees of freedom (such as quadrotors),
the number of particles that is required to accurately represent the distribution can
be prohibitively large.

The Rao-Blackwellized particle filter decomposes the configuration space in or-
der to reduce the dimension of the particle-based distribution approximation. The
main goal is to reduce the required particle count for the particle filter [8, 12] by
designing a hybrid filter achieved by merging the PF and the KF. That is, for some
of the parameters, estimation is done through KF and for others PF is used. In our
application, since a robot moves through a featureless tunnel, the localization uncer-
tainty for the position along the axis of the tunnel is high and it is hardly a proper
Gaussian distribution. However , the uncertainties in position for the other two di-
rections are small and they can be well approximated by Gaussian distributions. For
the former case, use of PF is meaningful and in the latter case KF is a reasonable
choice.

2.3 Controller Design

We use the linear controller design of [18]. Since our target application requires
mostly stable flight with minimum linear acceleration, linearization of dynamic
equations around the hover position can be justified. Our controller utilizes a back-
stepping architecture that consists of a position controller and an attitude controller.
The high level position controller generates desired orientations based on user spec-
ified way-points and the on-board localization feedback. The low level attitude con-
troller drives the robot to the desired orientation by adjusting motor RPMs.
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As shown in Fig. 6, a trajectory generator is used to generate a trajectory from
the current pose to the goal pose. At this level we can also incorporate constraints
such as closest distance to walls, maximum linear and rotational speeds, and other
constraints.

3 Methodology

3.1 Process and Observation Models

We define the process model with the equation

xt+∆ t = f (xt ,ut ,∆ t) (1)

where x is the state vector and u is the control input derived from IMU. Vectors x
and u are defined as:

xT = [x,y,z, ẋ, ẏ, ż,ψ,θ ,φ ]W , (2)

uT = [ẍ, ÿ, z̈, p,q,r]B. (3)

The process model implements dynamics of a quadrotor which have detailed ex-
planations in [18]. As it is the case for MEMs sensors, our IMU has both bias and
random errors. Then the true IMU data becomes

u∗ = u−ubias−urnd (4)

where urnd is a random vector drawn from a normal distribution and ubias is the
bias error. The process noise in the x̂W direction is modeled by an additive random
disturbance which is distributed normally with known variance.

We are using a Hokuyo laser scanner [2] which can take measurements with a
180 degrees span in the xB − yB plane. A 3-D printed dual-mirror mount is fixed
on top of the laser scanner to reflect rays in upward (+ẑB) and downward (−ẑB)
directions [13] (Fig. 3). These measurements together with the orientation estimate
and the knowledge of the map are used to localize robot on the yW−zW plane of the
tunnel using a derivative of the ICP algorithm. This algorithm uses rays emanating
in the four directions ±ẑW and ±ŷW . Note that no rays might be exactly in these
directions due to the orientation of the robot, in case which we select the closest
rays. In following explanations we will call these vectors with uW ,dW ,rW and
lW which refer to laser beams closest to the upwards, downwards, rightwards and
leftwards directions in the world frame.

We do ray-casting to determine the intersections of the above four sets of vectors
(uW ,dW ,rW and lW ) with the map. We call these as uW

c ,dW
c ,rWc and lWc . Casting

is done against an occupancy grid map with resolution of 5 cm. After ray-casting,
we update robot yW , zW positions such that the discrepancy between the measured
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rays and the casted rays reduces. A snapshot of this procedure is illustrated in Fig.
7. Also Algorithm 1 explains this method. Due to the convexity of the tunnel cross-
section, this algorithm is guaranteed to converge to the correct position.

The on-board attitude estimator supplies roll and pitch data with drift correction;
but the yaw needs to be corrected using the laser because the IMU cannot measure
the global yaw angle. However, due to the metal interior of the tunnel, we cannot
use the magnetometer output as a global reference to the yaw angle. For this reason,
we estimate the yaw angle with respect to the tunnel using laser scans.We propose
a geometric solution to this problem using the fact that intersection of a cylinder
(tunnel) and a plane is always an ellipse. It is easy to see that the intersection of a
plane with a cylindrical tunnel can result in three different curves which are circle,
ellipse and two parallel lines. This curve is a circle only when x̂W and ẑB are aligned,
which is very unlikely to happen in our case. Other two cases are more likely to be
observed and both can be treated as an ellipse since two parallel lines correspond
to the special case of an ellipse with infinite major axis length. So we fit an ellipse
to scans and then orientation of the major axis gives negative of the yaw angle up
to π radians ambiguity. While we define ψ = 0 to be the case when +x̂W and +x̂B

are coincident, the source of ambiguity is due to the lack of any clues to distinguish
whether a scan is taken when robot’s heading is ψ =ψ0 or ψ =ψ0+π . In both cases
the curve due to the laser has the exact same shape. We choose the yaw measurement
that is closest to the current UKF yaw estimate for measurement update.

Fig. 5 A sample laser scan data. Ellipse is fit
using the method in [11]. In order to elimi-
nate outliers, we use RANSAC. Outliers are
due to operators moving together with the
quadrotor, noise and laser failures.

As seen in Fig. 5, laser data can be noisy
due to unmodeled obstacles in the environ-
ment, inherent noise in the laser scanner
and complete failures. A direct fit to such
data is very probable to give wrong esti-
mates which we experienced several times
during experiments in development stage
and caused crashes. In order to get rid of
this problem, we use RANSAC [10] which
obviously improves fit quality. Since we do
not make fast maneuvers, we make a rea-
sonable assumption that quadrotor is almost
in hover state, in other words φ ≈ 0 and
θ ≈ 0. Otherwise resultant ellipse fit would
also reflect the effect of non-zero φ and
θ angles and we would need to decouple
these effects to obtain the actual yaw angle.
We leave the details of ellipse fitting algo-
rithm to [11].
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3.2 Rao-Blackwellized Particle Filter Design

In this model, we carry the well-known UKF prediction using the IMU output. Mea-
surement updates for positions and velocities in the yW − zW directions, as well as
the roll, pitch, and yaw orientation are performed within the UKF framework as
well.

Fig. 6 The estimator based on the Rao Blackwell Filter and the PD controller for autonomous
flight in a tunnel of known cross section. A particle filter with N particles is used to model the
propagation of state estimates and the uncertainty in the x̂W direction, while a UKF is used to
estimate the remaining states.

A particle filter is used to estimate xW position of robot (Fig. 6) . That is, during
the prediction step of UKF we make use of gyroscope and accelerometer data and
in the measurement update stage we integrate information from the measurement
models above. The reason using orientation information from the IMU twice which
are the gyroscope data (angular velocity) and the on-board roll-pitch estimation, is
because of the computational constraints. IMU supplies estimates (roll and pitch) at
a rate of 100Hz which we know to be reliable due to the drift correction. But making
measurement updates at this rate consumes valuable CPU time. Instead we integrate
them at the same rate of laser scanner (30Hz) and carry the low-cost prediction
update at 100Hz using the gyroscope data (angular velocity). Note that running a
measurement update (UKF update) requires calculation of matrix square root which
is of complexity O(n3). With our current setup, we have chosen not to spend CPU
power with frequent measurement updates.

The overall system design is shown in Fig. 6. We run a particle filter for estimat-
ing the position and velocity along x̂W and an UKF common to all particles to es-
timate the remaining state variables which are yW , zW and their derivatives and the
three Euler angles, ψ,θ ,φ . The inputs are data from the laser scanner, the IMU and
a grid map. Unless we are close to the junction region of the horizontal and inclined
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portions of the tunnel, we don’t have measurements to estimate xW . This implies
that in such cases uncertainty along this direction can be in any form which may not
be have a closed-form representation. However for all the other states, including lat-
eral and vertical positions and orientation, we always have laser measurements. We
expect a unimodal uncertainty model for these states and use the UKF to estimate
them.

z

y

ey1

ez1

ey2ez2

actual pose

laser scans
error

initial pose

w

w

Fig. 7 Starting from an initial pose, ICP iteratively refines yW − zW positions to reduce discrep-
ancy between laser data and robot pose. Red vectors are the error vectors to be minimized. Al-
though in the horizontal region of the tunnel cross-section is circular, in inclined region it will be
an ellipse as seen by the robot.

When the robot is away from the junction region of the two portions of the pen-
stock, laser scanner cannot make any readings since the closest wall is farther than
the maximum range of the laser scanner. This invalidates the measurement model
explained for yW − zW estimation. Instead we use Algorithm 2 as the measurement
model to calculate the weight for each particle. When there are valid measurements,
particles consistent with them will be given more importance hence will survive
in the importance sampling. Otherwise all particles are given the same weight and
importance sampling favors them equally. As we get consecutive measurement fail-
ures, distribution of the particles spread out widely according to the IMU noise
model. Note the power in representing arbitrary distributions with particles is obvi-
ously not achievable with a Gaussian assumption.

In Algorithm 2, to find the weight of a particle, similar to what we do in Algo-
rithm 1, we define a set of vectors, fW , which are the closest laser beams to x̂W

direction. Then we cast these vectors against the grid map to obtain fWc . The weight
of a particle is the reciprocal of |(fW−fWc )x|2. In case we don’t have a valid reading,
we assign a non-significant weight.

Depending on the availability of valid laser measurements along the axis of the
tunnel, we constrain the regions to resample particles in. In case of valid measure-
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Algorithm 1 [hyz,Σyz] =measurement model yz(laser,map)
iter← 0

rW ← get beams in dir(−ŷW , laser) ; lW ← get beams in dir(+ŷW , laser)

uW ← get beams in dir(+ẑW , laser) ; dW ← get beams in dir(−ẑW , laser)

while (errx > thres∧ erry > thres)∨ iter < itermax do
uW

c ←raycast(uW ,map); dW
c ←raycast(dW ,map)

lWc ←raycast(lW ,map); rWc ←raycast(rW ,map)

erry← (lWc,y− lWy )+(rWc,y− rWy ) ; errz← (uW
c,z −uW

z )+(dW
c,z −dW

z )

pW
y ← pW

y + 1/2erry ; pW
z ← pW

z + 1/2errz

iter← iter+1

end while
hyz = py,z

Σ = QT

[
err2

x 0

0 err2
y

]
Q

QT ΣQ transforms residual errors of ICP to its corresponding covariance matrix [6]

ments, resamping is done only in the region close to the junction. Similarly, failure
of laser implies robot is away from the junction and particles close to the junction
are eliminated.

Algorithm 2 [wx] =measurement model x(laser,map)
if laser is not valid then

wx← 1/σ2

else
fW ← get beams in dir(+x̂W , laser)

fWc ←raycast(fW ,map)

wx← 1 / |fWc,x− fWx |2

end if

3.3 Control

The errors in localization exhibit anisotropy. They are significant in the position
coordinate along the axis of the tunnel but more constrained in the other directions.
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Accordingly we advocate a semi-autonomous control scheme where the the operator
goals (or goals from a planner) prescribe the yaw angle, lateral and vertical positions
along the cross section of the tunnel, while the control along the axis of the tunnel
is performed by the operator by directly commanding the acceleration through a
joystick.

4 Experimental Work

In this section we present and interpret results of our experimental work. Data for
the experimental work is collected in three different sites: the Carter Dam and the
Allatoona Dam, both in Georgia, and in a long building hallway at the University of
Pennsylvania.

In the visit to the Carter Dam, two datasets were collected. In the first flight the
quadrotor traversed along the horizontal part of the penstock. And in the second
dataset, it flew close to the junction region towards the inclined region. During these
tests, the quadrotor was controlled manually. The proposed localization algorithm
was run off-line using collected data sets.

(a) Experiment #1 in Allatoona Dam (b) Experiment #2 in Allatoona Dam

Fig. 8 These figures show estimation outputs for yW -zW positions together with covariances as
shaded regions. In these experiments quadrotor flew semi-autonomously. Due to reflective surfaces,
laser scanner failed to return readings along x̂W direction. So we cannot estimate position along
this direction. Failure was due to the distance to the junction region, wet surface and oblique surface
w.r.t. ray direction.

Two semi-autonomous flights were conducted in the Allatoona Dam. The opera-
tor sets the desired yW , zW , and ψ through a radio controller. Then feedback control
of these parameters is carried out by our controller. The operator controls the accel-
eration along the x̂W direction. We believe semi-autonomy proves accuracy and
stability of our estimator along the tunnel cross section. Otherwise, as opposed to a
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ground robot, faults in controller or estimator would cause unrecoverable instabili-
ties.

We conducted a third experiment in a building at the University of Pennsylvania,
along a 42 meters long corridor while the quadrotor flew semi-autonomously. In the
corridor experiment, although there are features, such as pillars and doors, the map
we are using is a featureless rectangular prism. So there is no feature in our map that
would help in estimating the xW position. Actually those features behave as noise
for yaw estimation which shows robustness of our estimator.

In Fig. 8-9-10 we give results for our Allatoona Dam, Carter Dam and university
building experiments respectively. These experiments show quadrotors can be con-
sidered as a reasonable choice for inspection of tunnel-like environments. Only with
a laser scanner and an IMU, as a requirement for semi-autonomy, localization along
the cross-section of the tunnel can be achieved robustly. Also, when one end of the
tunnel is in the range of laser scanner, localization along the tunnel axis is achieved
as well.

In Fig. 8(b) at 40th seconds, increase in the covariance is due to a worker walking
near the quadrotor. However, we can handle such cases and estimated position is
not affected. In Fig. 9(a)-10(a), periods when the covariance gets larger is when the
robot is away from the end of the tunnel/corridor with the following exceptions.
In Fig. 9(a) around 160th seconds increase in uncertainty is due to failure of laser
scanner due to water drainage behaving as a mirror. And increase in variance in
Fig. 10(a) around 100th− 120th and 160th seconds is because quadrotor was tilted
and laser scanner sees the floor. Since the floor is tiled with marble, it behaves as a
mirror and laser scanner fails.

(a) Experiment #1 in Carter Dam (b) Experiment #1 in Carter Dam

(c) Experiment #2 in Carter Dam (d) Experiment #2 in Carter Dam

Fig. 9 These figures show estimation outputs for xW -yW -zW positions together with covariances
as shaded regions. Opposed to Allatoona Dam tests (see Fig. 8), since the walls of the penstock
was not wet and reflective, we could get readings from the junction region of the tunnel. In Fig.
9(a) we can see that during a period of the flight we are able to localize along x̂W direction. In the
second experiment we flew the quadrotor close to the junction region and have less time periods
without valid readings along x̂W direction. This is shown in Fig. 9(c). High covariance regions in
Fig. 9(a) correspond to localization failures.
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(a) Experiment in university building (b) Experiment in university building

Fig. 10 These figures show results for tests carried in a corridor of length 42 meters in a
building of University of Pennsylvania. Estimation outputs are given for xW -yW -zW posi-
tions together with covariances as shaded regions. Videos of this experiment can be found at:
http://mrsl.grasp.upenn.edu/tolga/FSR2013.mp4

5 Conclusion and Future Work

This work presented results of localization and semi-autonomous control of a
quadrotor flying in a dam penstock. We used a Rao-Blackwellized particle filter for
localization consisting of a standard particle filter for localization along the tunnel
axis and a UKF to represent estimates the other five directions. This way we can rep-
resent uncertainty along the tunnel axis, which is quite significant compared to the
other directions, using an non parametric distribution. Because of this anisotropy,
our experiments required the human operator to specify input (acceleration) along
the tunnel axis while the low-level control software provides for regulation and tra-
jectory tracking in the other five directions.

This work is significant because it can replace the tedious and expensive pro-
cess of manual inspection involving building scaffolds with human inspectors with
semi-autonomous quadrotors with cameras. We believe that with some training a
modestly skilled operator can fly a quadrotor through a tunnel while inspecting im-
ages from onboard cameras for defects along the tunnel walls. While our experi-
ments were performed in penstocks that are used in dams and hydroelectric power
plants, the same approach can be used for other tunnels such as those encountered
in transportation networks.

Our current work is directed toward addressing more complex (but known) ge-
ometries encountered in dams near turbines and to improve the estimation of local-
ization errors along the tunnel axis using onboard illumination sources and visual
odometry algorithms.
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