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Abstract—In the last decade, multi-rotor Micro Aerial Ve-
hicles (MAVs) have attracted great attention from robotics
researchers. Offering affordable agility and maneuverability,
multi-rotor aircrafts have become the most commonly used plat-
forms for robotics applications. Amongst the most promising
applications are inspection of power-lines, cell-towers, large and
constrained infrastructures and precision agriculture. While
GPS offers an easy solution for outdoor autonomy, using on-
board sensors is the only solution for autonomy in constrained
indoor environments. In this paper, we present our results
on autonomous inspection of completely dark, featureless,
symmetric dam penstocks using cameras and range sensors. We
use a hex-rotor platform equipped with an IMU, four cameras
and two lidars. One of the cameras tracks features on the
walls using the on-board illumination to estimate the position
along the tunnel axis unobservable to range sensors while all of
the cameras are used for panoramic image construction. The
two lidars estimate the remaining degrees of freedom (DOF).
Outputs of the two estimators are fused using an Unscented
Kalman Filter (UKF). A moderately trained operator defines
waypoints using the Remote Control (RC). We demonstrate
our results from Carters Dam, GA and Glen Canyon Dam,
AZ which include panoramic images for cracks and rusty
spot detection and 6-DOF estimation results with ground truth
comparisons. To our knowledge ours is the only study that can
autonomously inspect environments with no geometric cues and
poor to no external illumination using MAVs.

I. INTRODUCTION

There is extensive literature on control, motion planning
and navigation, and state estimation of multi-rotor MAVs.
[2], [3] designed low-level controllers for agile and aggres-
sive maneuvering using motion tracking systems such as
Vicon. New motion planning and navigation methods such
as [4], [5] exploited the nonholonomic characteristics of
these small robots. Finally, the major but difficult problem of
Simultaneous Localization and Mapping (SLAM) is tackled
by [6], [7], [8] using range and image sensors applied on
MAVs.

Compared to ground robots, MAVs have additional DOFs
which further complicate pose estimation and safe navigation
problems. Despite this fact, due to their agility, maneuver-
ability and simple design with affordable costs, MAVs are
platforms cut out for real-life applications. Furthermore, as
the theoretical foundations saturate, MAVs are becoming
more common in military applications and also in civilian
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Fig. 1: The hex-rotor platform equipped with an Intel i7
computer, IMU, two Hokuyo UST20-LX lidars and four
Bluefox XGA cameras. This design uses eight 10 W LEDs
placed around the cameras to provide on-board illumination.
The KHex [1] weighs 2.6kg and can fly about 8 minutes
with a four cell 4500 mAh battery.

applications such as maintenance of power-lines, cell-towers
and precision agriculture. [9], [10] motivate use of MAVs for
precision agriculture and inspection of large structure without
offering autonomous solutions. In their recent publication
similar to ours, Hansen et al. [11] contributed to inspecting
gas pipelines but using a wheeled robot.

An important application field is inspection of large in-
frastructures such as dam locks, gates and penstocks. These
structures are exposed to huge, oscillating loads for long pe-
riods due to which continuous maintenance is vital. If crack
formation and rusty spots are not treated timely, catastrophic
consequences are inevitable such as collapse of the dam or
water discharge tunnels. Current inspection and maintenance
practices are carried manually by dam workers either by
swinging from the reservoir-side gates, tethering carts or
building scaffolds. In either case, the workers manually
inspect the tunnel walls for cracks and rusty spots.

In this study, we propose a complete system design to
collect detailed imagery from inside dam penstocks for
inspection and maintenance purposes using fully autonomous
multi-rotor MAVs. We propose solutions to complete pose
estimation in settings with no geometric features and in
complete darkness. The system is designed for moderately
skilled operators that can fly using a simple joystick in
pitch darkness without line of sight to collect data for
inspection. The operator can command position or velocity
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Fig. 2: A CAD model of Glen Canyon Dam penstock with
close-up view of the bending section. The diameter of the
tunnel varies from 4.5m to 5.5m. The horizontal section
is more than 50m. long. The inclination climbs up longer
than 100m with a slope of 60 degrees. The horizontal part
makes a gentle left turn just before the inclination starts due
to the narrow river bed. We present estimation results and
panoramic images from the experiments at this site and at
Carters Dam.

in all directions with soft constraints to prevent pilot error.
The main motivation is to reduce the risk of accidents, the
man power requirement and the cost of inspection.

By their design, MAVs are highly unstable and nonlinear
platforms. Furthermore, penstock interiors are usually wet,
partially covered with mud which adversely affects the sensor
performance hence pose estimation [12]. Lidars especially
suffer from wet tunnel walls and water puddles on the
floor. Also, textureless tunnel walls prohibit vision-based
estimators under weak illumination. Consequently, vision-
only [7] or range-only [13], [14] methods do not offer a
solution to the challenges of this problem. In order to attain
complete autonomous control, eliminate possible sensor re-
lated failures and reduce the training required for operating
the platform, penstock inspection MAVs have to be equipped
with redundant sensors (Figure 1).

Using a similar sensor package to ours, [15] proposes the
use of range sensors in combination with cameras for solv-
ing the data association problem and estimate incremental
odometry. However they assume that the image is texture-
rich which does not apply to our case due to low illumination.
In another paper Lui [16] uses a sensor backpack system
consisting of IMUs and lidars for indoor localization. While
their method offers a solution for localization and mapping
in corridors of length smaller than the range of the laser
scanners, symmetric and very long penstocks will fail their
algorithm.

The two experiment sites that we visited to evaluate our
work exhibit similar characteristics with a few minor dif-
ferences. Penstocks of Carters Dam, GA slope upwards at a
single location whereas Glen Canyon Dam, AZ bend laterally
due to the narrow river bed (Figure 2). The inclination of the
tunnel ranges from gentle slopes to close-to-vertical case as
is the case at Glen Canyon Dam. For this reason, we stress

that ground vehicles such as proposed in [11] cannot attain
sufficient traction on the slippery walls along the inclination.
We estimate the lateral and vertical coordinates of the
robot using the two lidars and the map of the penstock.
Using the IMU and the lidars we can also estimate the 3-
DOF orientation [12], [6]. However, the position of the robot
along the axis of the tunnel is unobservable to range sensors
except at the start of the inclination. Lack of geometric cues
prohibits the use of range sensors in localizing the robot
along the tunnel axis. We overcome this problem by using the
cameras to track features on the walls. The optical flow field
is used to incrementally update the position estimate along
the tunnel axis. Since the tunnel is not externally illuminated,
on-board illumination plays an important role on the visual
odometry (VO) accuracy. Partial estimates from the VO and
the range-based estimator are fused using a UKF to obtain
6-DOF pose estimate. Finally, the metal tunnel structure
completely eliminates the use of GPS as an alternative sensor.
To our knowledge, except our previous study [12], this work
is the only fully autonomous inspection application in such
completely dark, featureless challenging environments.

II. SYSTEM DESCRIPTION
A. Notation

We define the world frame with the standard reference
triad {£W,9W,2W} where £"V is aligned with the axis of
the tunnel. It is defined to be pointing towards the inclined
section. 2" is aligned with the gravity vector pointing in
the opposite direction which completes the definition of
the world reference frame. The body frame is attached to
the geometric center of the robot body which we assume
to be coincident with the mass center. It is denoted as
{£B,55 531, 2B is the forward direction of the robot
pointing in the same direction with the lidars. Finally 3B
is aligned with 2" at hover state.

Transformations between frames are carried with the ro-
tation matrix R € SO(3). We use the ®Ryy notation for
transformations from the World frame to the Body frame.
In the rest of the paper, scripts such as W or B are used to
denote the frame in which a vector is represented.

In our formulations, we use Euler angles to represent rota-
tion with the ZXY order. Roll, pitch, yaw angles are denoted
as ¢, 6 and v respectively. The rotation matrix "Rg is
successive application of elementary rotations around the
body frame axis such that ZRyy = RyRgRy,. Finally, we
define the 6-DOF robot state vector as r = [x,y,z,0,0,y]".
r; where i € {x,y,z,0,0,y} is used to refer to the corre-
sponding state coordinates.

B. The KHex Platform

In this work we use the KHex platform designed by
KMel Robotics [1]. The KHex can fly approximately 8
minutes with a four-cells 4500 mAh battery with the total
payload of 2.6 kilograms. Figure 1 shows the KHex platform
equipped with an Intel i7 board, two Hokuyo UST20-LX
lidars and four XGA resolution BlueFox cameras. KHex is
redundantly equipped with sensors in order to reduce the
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Fig. 3: The Camera-LED setup. We use eight Cree power-
LEDs to provide on-board illumination for VO. Each LED
is 10 W and has 5000 K color temperature.
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Fig. 4: This figure shows schematics for the sensor place-
ments. Both figures are side views. The left figure shows
one of the lidars tilted slightly downwards to measure the
elevation while the other scanning in the £ —$% plane.
The right image shows placements of the four cameras. One
of the cameras is used to track salient features on the wall.
At the same time, all cameras are used to grab images to
generate panoramic images.

risk of sensor related failures and collect detailed imagery
from inside the penstock. In our previous work [12], we
retrofitted the robot with a mirror setup to redirect a subset
of the lidar rays to the floor and the ceiling to measure the
elevation. However puddles, continuous water drainage and
wet surfaces often cause failure of height measurements. This
problem is solved by dedicating a lidar tilted downwards to
measure the elevation.

We use KMel’s proprietary on-board attitude estimator.
After gravity correction, roll (0), and pitch (¢), estimates
exhibit low drift and noise so we directly feed these to the
UKF prediction step at 100 Hz (Figure 5). The two lidars
send scan data through two separate Ethernet ports at 40
Hz with a span of <270 degrees. Landing gears and booms
partially occlude the view of the bottom lidar. Only one of
the cameras is used for pose estimation due to the bandwidth
constrain of the USB 2 bus. The onboard Intel 17 NUC board
can only transfer 24 FPS XGA resolution frames in total.
Since on-board processing is not supported on the BlueFox
cameras, camera driver resizes the raw images to VGA
size on the CPU for faster image processing. We sacrificed
use of multiple cameras for higher frame rates since the

image quality at lower frame rates is bad for optical flow
calculation. The schematic showing the sensor placement
and the preferred robot orientation during flight is shown
in Figure 4.

In order to obtain sufficiently bright and textured images
for both inspection and VO, we equipped the robot with
power LEDs (Figure 3). This removes the requirement of
external illumination and reduces the labor requirement sig-
nificantly.

We define the transformation of sensor data to the body
frame with a rotation matrix and a translation vector given
as PRg and t7 where 7 is the corresponding sensor frame.
For the top and bottom lidars we use £; and £; and C,, C;,
C; and €, for the right, top, left and bottom cameras. We use
the notation {j,JF} to refer to the j/* image feature point or
laser beam from the sensor with the frame label J.

C. Environment Assumptions

The method we propose relies on the map, M, of the
tunnel. M is a 3D occupancy grid approximation of the
tunnel with 5 cm resolution. We assume that the cross-section
of the tunnel is convex. This is basically in order to avoid
local minima in the range-based iterative closest point (ICP
[17]) algorithm. The tunnel has a single axis and does not
branch off as in the case of city sewer systems.

D. Controller & Navigation

We use the PD controller explained in [2] as is. This
method linearizes the equations of motion of a quadrotor
MAV at its hover state. Because we are only interested in
flights at slow speeds, close to the hover configuration, the
linear controller proposed in [2] fits well to our case.

Since the 6-DOF pose estimator handles low level control,
the system requires only moderate operator training. The
operator defines waypoints and the speed using an RC
interface. We visualize the robot state and the waypoints in
the ROS visualization software, RViz, to visually assist the
operator.

II1. METHODOLOGY
A. Software Architecture

Robot Operating System (ROS) by Willow Garage is a
pseudo-operating system which implements tasks as sepa-
rate processes with a central mechanism for inter-process
message exchange. Each ROS process handles certain tasks
such as data acquisition, pose estimation or decision making.
In Figure 5 we show the software architecture with each box
corresponding to a process in a data flow diagram.

The inputs to the system are the map, M, IMU data, frames
from the right camera and range measurements from the
two lidars. We assume that the engineering drawings of the
penstock are given and converted to occupancy grid map,
M. These experiments choose M with 5 cm resolution. The
UKF node outputs 6-DOF pose estimates to be fed to the
PD controller. The operator gives waypoints to the trajectory
generator using an RC. Finally, the controller generates
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Fig. 5: This figure shows processes in a data flow diagram.
The inputs to the system are the IMU, lidar and camera
measurements, and the map of the tunnel. Partial pose
estimates from range-based localizer and visual odometry
are fused in the UKF node. The operator gives waypoints
using an RC to the trajectory generator output of which is
fed to the PD controller.

low-level controller commands in accordance with the pose
estimate and the trajectory.

One of the four cameras is used to track salient features on
the walls and incrementally update the robot position along
the tunnel axis. The fusion of the range-based estimator with
VO estimates the 6-DOF pose of the robot. All four cameras
are used to grab images from the four sides of the robot to
form 360 degrees image panoramas. These images can later
be used to locate cracks and rusty spots by the maintenance
engineers.

The frequency of the estimator is determined with sensor
rates. The prediction step of UKF runs at a rate of 100 Hz
while the range-based measurement update runs at 40 Hz.
Optical flow based position increments are integrated to UKF
at 24 Hz.

B. Range-Based Estimator

As shown in Figure 4 one of the lidars is tilted downwards
by 60 degrees. The relative pose of each lidar with respect to
B is represented with rotation-translation pairs 2R L, — t%;
and PR , —t% for the top and the bottom lidars respec-
tively. The ICP scan matcher compares the raw data from
both of the lidars to M and iteratively reduces the error to
refine yaw, vertical and lateral position estimates. Lidar data
is preprocessed to exclude indefinite measurements and rays
with range larger than ry,. The latter filter reduces the effect
of noisy range readings in yaw (ry) and lateral position (ry)
estimates in the iterative least squares formulation that is
explained below. In order to suppress noise, we apply median
filtering in the range space. In addition, the scanner data
are downsampled at the ray tips to exclude uninformative
repetitive data and save CPU time.

This work chooses the median filter window to be 5, range
threshold r;, = 6m and the scanner ray tip downsampling
resolution as 3cm.

The ICP algorithm solves the data association problem
by projecting each laser beam onto the grid map M and
assigning the first hit voxel center to the corresponding beam.
In other words, we define the closest map point to be the
voxel center closest to the beam origin and intersecting with
the lidar beam represented as

Vg, =, & o3 M) )]
* ¢, = argmin (||r; +W Rgt%i —Vell2) )
Vker,Li

where r; is the translational component of the state vector r
as defined in W, i € {t,b}, «; ¢, is the angle of the ray {,L;}
in the scanner’s sweeping plane, M is the 3D occupancy
grid approximation of the point cloud and | e ||, is the L,
norm. The projection function 7 casts a ray along {j,£;}’s
direction emanating from the origin of the corresponding
lidar frame. This ray is denoted as p; ¢, and the origin of
lidar i is written as r, +" Rgt%’_. The list V; ¢, consists of
all the voxel centers that the projection function 7 intersects
the corresponding laser beam. Finally, the beam {j,£;} is
associated with the voxel centered at \7;‘ o Figure 6 depicts
these parameters and vectors in a schematic.

Fig. 6: This schematic depicts the parameters and vectors
explained in Equations 1-2 and 13-14. The bright stars
represent \7;‘.. , and V;*er in these equations.

Having the data association defined, we formulate the
problem as an iterative weighted least squares problem
without regularization written as WAx = Wb where x =
[ cos(Ary), sin(Ary), Ary ], W is the diagonal weight
matrix. We assume that the on-board attitude estimator gives
accurate roll and pitch so it is excluded from the ICP. In
fact, due to the symmetric tunnel geometry, roll cannot be
measured except with an IMU or magnetometer. A is a
N x 3 matrix and b is an N vector where N is the total
number of data points from both of the lidars. The vector
corresponding to the ray {j,£;} with the measurement r; ¢,
is pfﬁl =rjc,*[cos(ajg,), sin(a; ), 0]7. We define A
and b as

Pt =" Ry (p}, +17,) (3)
An=1P}2 s =P} s 1] )
b=V, — Ty 5)

Win = wy (6)

where A, is the ' row, w,, is the n'" diagonal element of the
weight matrix W and each {j,£;} tuple matches to unique
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n. Each data point is assigned a weight w, as a function of
the alignment error &,. These parameters are defined as

&= P r Vi, 0
Wy = o llealy (8)

where we choose Yy = 3. This way, correspondences with
large initial residuals are penalized more and lose their
contribution to the least squares solution. Finally the partial
solution becomes

x=(ATwA)~'ATwb 9)
(10)
(11)

Since x, and x; might not be valid cosine and sine values, we
clamp them to the [—1,1] inclusive range which is denoted
by e*.

The above formulation solves only for ry and ry simul-
taneously because of their strong coupling. Whereas, due
to the geometry of M and the way we formulate the least
squares solution, r; and ry do not correlate significantly. r,
is mostly a function of the ranges from the bottom lidar. For
each iteration of the pose refinement we define the r, update
as

Ary = x3
Ary = atan2(x3,x7).

Ipfﬁzl
Ar, = anz*exp o H —1]. (12)

As we noted earlier, there is an implicit one-to-one mapping
between n and {i,L;}.

It should have been noticed that the range-based pose
estimator does not update r, since robot position along the
tunnel axis is not observable to range sensors. This is because
of the geometry of the tunnel and the maximum lidar range.
When the robot hovers close to the bend, top lidar can take
measurements from the inclination. This gives an estimate
for r, for a very small subspace of the tunnel, hence we
discard it. We start the iteration from the last valid pose
estimate, cast rays using the 7(e) function, estimate Ar, .y
and update the robot pose until it stabilizes.

C. Visual Odometry (VO)

The shape of the environment does not permit use of
range sensors for position estimate along the tunnel axis,
that is ry. In order to solve this problem, we propose using
cameras to track salient features on the tunnel walls. r, can
be incrementally updated over time using the optical flow
field given ry; ¢ oy estimates and the map M.

The VO method we design is heavily dependent on the
quality of the on-board illumination since we don’t have any
external light sources in the completely dark penstock. As
shown in Figure 7 the camera sees very pale images with
very little texture. None of the feature extraction algorithms
among FAST, Harris and Shi-Tomasi [18][19] could find any
features or they fail persistence. Furthermore, the nonuniform
lighting pattern and lens glare generate an artificial intensity
gradient which adversely affects both feature extraction and

tracking performance. We overcome these problems by ap-
plying a set of image filters as shown in Figure 7 to amplify
the weak texture. In order to enhance contrast of the raw
image we apply histogram equalization followed by Gaussian
blur of 5 pixels kernel size. The blurring operation smooths
the noise formed after histogram equalization. Then we apply
the built-in OpenCV adaptive threshold on the blurred image
which gives a black & white image. An interesting property
of this image is, the white pixels adhere to each other and
form small blobs which persist for a couple of frames.
These blobs define small hills and the black regions form
valleys around that blob which Kanade-Lucas-Tomasi (KLT)
tracker [20] can easily track. Despite the short blob adhesion
duration, optical flow field density is preserved due to the
newly formed blobs. In some cases, only a small subset of
the image exhibit sufficient quality even after applying the
above filter pipeline. In these cases, we set the region of
interest to the brighter regions.

Fig. 7: This figure shows the output of the image pro-
cessing pipeline at each step and the resultant optical flow
field from our visit to Carters Dam, GA. At the top-left
is the raw image. This is a pale image with almost no
significant texture. In order to amplify the texture gra-
dient, we used histogram equalization as shown on the
top-right. Next, an adaptive threshold is applied to get a
black-white image as in the bottom-left. FAST features
and KLT tracker are used to extract and track features
on this image. The corresponding video can be found at
http://mrsl.grasp.upenn.edu/tolga/iros2016/

The built-in feature extraction functions of OpenCV return
features with higher responses first. In some cases, this
results in accumulation of features around small patches
with significant texture. However, for better estimator per-
formance, uniform feature distribution over the whole image
plane is preferable. To achieve uniform feature distribution,
we divide the image into a grid of 3 rows and 4 columns,
and force equality of the number of features in each grid
cell.

We eliminate flow vectors which are longer than a thresh-
old. The typical value is between 30 and 100 pixels de-
pending on the flight speed. These cases correspond to KLT
tracker failures due to either rapid camera motion or a feature
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point at plain, low texture image region. Another criterion we
implement for discarding bad features is to only use features
with lifetime > 3 frames.
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Fig. 8: These figures show snapshots from three perspectives
of the two-step VO displacement estimation. From left to
right are back, right and top views of the tunnel along the
inclined section. The robot poses are denoted as rotation-
translation pairs (R;,T;) i € {1,2}. Grey shades represent the
pose uncertainty. The red dots are the back-projected feature
points. The range-based localizer can only provide lateral and
vertical position estimates. The missing DOF is estimated
using VO.

We estimate the inter-frame displacement along the tunnel
axis by analyzing the back-projection of the tracked features
onto M. This operation is similar to the ray-casting function
m(e) defined for the range-based localizer. Features in the
1* and 2" frames are referenced by {j,C;}! and {j,€;}?
respectively. The 2™ frame is the most recently grabbed
frame and the 1% frame is the previous one. Note that, since
lidars and cameras are not working with the same rate, we do
not use a common time index. j is the tracked feature index
in the camera with frame C; where i € {r,¢,/,b}. In fact, due
to low USB 2 bandwidth, we use only the right camera. The
3D projected point on M for each feature is found as

(13)
(14)

v},(ﬁ'r = n(rf,{j,@,};M)
Fe, = argmin (||rf +"Y RELE —Vill2)
Vi€Vje,

where 7 € {1,2} denotes the frame index. The behavior of
the m(e) function and the definition of the V lists are the
same as explained previously. Figure 8 shows an instance
of the robot from three perspectives with the back-projected
rays. As shown in the system architecture (Figure 5), the
initial pose of VO is input from the range-based localizer. In
the above equations these are denoted by rf. {j,C,} defines
a vector p; ¢, written in the C, frame as

{ja GV}X
{j7 er}}'
1

pf’er =K! (15)

which is also depicted in Figure 6. Here K is the camera
calibration matrix and {j,C,},—{/,C,}, are the x—y image
coordinates of the corresponding image feature. We use ﬁjeé’
for the normalized version of this vector.

Since M is a finite resolution occupancy grid, the back-
projected points always correspond to voxel centers. How-
ever, discretization loses the precision of the continuous robot
pose that definitely affects the VO precision adversely. We

modify Vf,*e, as follows

e, = IVie, —xillxpre, + - (16)
Since the voxel size is small (5cm) and the tunnel surface is
smooth, we assume the norm of the back-projected ray (the
term the L, operator is applied) is accurate. We then correct
the orientation of this ray using the exact feature coordinates
encoded by ﬁjeér

The motion unobservable to the range-based localizer
is along the tunnel axis. We denote this direction as 7
which is equivalent to £V along the horizontal section and
#Wcos(B) 4 2Wsin(B) along the inclined section 8 being
the inclination angle. The projection norm of the vector
difference V?fé‘r — V}.fé‘r onto 7 gives an estimate of the
corresponding displacement.

A histogram & of the projections (V?*é*r —V}j‘g) -f s
generated with 5 bins. Features in the highest percentage
bin are regarded as inlier. The mean of the projections in the
highest ranking bin is assigned to be Ar;.

D. Measurement Model Uncertainty

In calculating the uncertainty of the range-based estimator,
we use the method proposed by Censi [21]. [21], details
of which we leave to the original work, assumes a single
polygonal environment and uses an information theoretic ap-
proach to estimate the information carried by the each scan.
However, as shown in Figure 9 assuming a single polygonal
environment does not work for some cases. For this reason,
we first segment the scan into clusters according to the
discrepancy between consecutive readings and represent the
environment with multiple polygons. The Fisher Information
Matrix (FIM) is estimated for each polygon which are then
summed to give a more accurate covariance estimate. The
symmetric FIM is defined as

° jx,x J)c.,y jx,q/
L™= Ty Tyy gy a7
J%X j‘l’v)‘ j‘l/»‘l’

written in £; frame for the /" lidar. Information from

Fig. 9: Sample laser scanner contour from inside the Carters
Dam penstock. The two straight segments are from the walls
of the tunnel. Since the lidar cannot see the end of the
tunnel, contour interrupts (circled). The FIM is estimated as
proposed in [21] separately for each segment and summed
to give the measurement covariance.

multiple lidars is merged by projecting each FIM onto the
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body frame, B, shown as J(Li)B. The upper 2 x 2 block,
denoted as J(L ,)f)’, can simply be projected by multiplying
with proper rotation matrices. We expand this block to 3 x 3
by appending the information for the z axis which is 0. The
transformation reads

IL)S 0]

j('ai);/,\;,z :W Rﬁi |: ( 6)x,y 0 :|LIRW~ (18)
Angular uncertainties however are not easy to project finding
a solution for which is beyond the concerns of this work.
Therefore we approximate j?l/f\fll/ as

I(Li)yy = "R(3,3) ., 1% I(L)yy (19)

where “WR(3,3);, is a measure of how much the lidar
is tilted. The off-diagonal elements for the y information
are ignored which does not affect the performance of the
estimator significantly.

The uncertainty due to the range-based estimator is then

written as

E(L)upe = [HEOW+IEDW] 0)

-1
Z(L)y = [J(L0yy +I(L2)yy| -
IV. EXPERIMENTS
A. 6-DOF Pose Estimation

The experiment environments are penstocks of Carters
Dam, GA and Glen Canyon Dam, AZ. Results we present
here include estimation results with ground truth compar-
isons when possible (Figure 11). At Glen Canyon Dam, we
marked the walls with spray paint with 2 meters separation
visible from the camera which we use as the ground truth
source. We collected this dataset while the robot was flying
along the horizontal section as can be seen in Figure 10.
The Carters Dam dataset was collected along the inclination
which was hard and dangerous to climb. For this reason, we
can rate the odometry success by observing scratches on the
walls.

Figure 13 shows the Carters Dam results. We manually
detect loop closure by following significant scratches at the
start and end of the flight. The drift for the ~ 40 m. flight
is less than 1 m which corresponds to < 2.5% error.

Figure 11 shows the results for VO in Glen Canyon Dam.
By manually inspecting the markers painted on the walls,
we record ground truth displacements and compare with
our estimation results. The time axis refers to instances the
painted markers are seen at the center of the right camera.
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B. Panoramic Image Generation

Figure 12 shows a panoramic image and textured map
reconstruction from Glen Canyon Dam. On the left is the
360 degree panoramic image generated by back-projecting
the pixels from the four cameras onto M and then projecting
onto a hypothetical omni-directional cylindrical camera. The
images on the right show the textured reconstruction plotted
inside the RViz environment.

Videos related to the experiments can be found at
http://mrsl.grasp.upenn.edu/tolga/iros2016/

Fig. 10: A snapshot from the experiments inside the
Glen Canyon Dam penstock. The robot is flying fully au-
tonomously using on-board illumination. Also in Figure 12
we show the local 3D reconstruction and the 360 degree
panoramic image generated using the images from the four
cameras.
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(c) Position estimate and error along the tunnel axis.

Fig. 11: These plots compare the VO results with ground
truth data for datasets collected in Glen Canyon Dam pen-
stock. The x-axis counts the instances that the markers on
the walls are seen at the center of the right camera.

V. CONCLUSION & FUTURE WORK

The focus of this work is robust robot pose estimation
to attain autonomy in dark, featureless, symmetric and GPS-
denied environments like penstocks. This work demonstrates
our methods and results with ground truth comparisons
for autonomous inspection in Carters Dam, GA and Glen
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Fig. 12: This figure shows the 360 degrees panoramic image reconstruction obtained using images from the four cameras
and the 3D visualization in the RViz environment. On the left image the water drainage, propellers and the ceiling are clearly
seen. Images at the right show a similar panoramic image wrapped around M.
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Fig. 13: This figure presents the VO results on the dataset collected in Carters Dam penstock, inclined section. The left and
middle images show the flow field laid on the camera view. Green circles focus on the scratches on the wall which we use
for manual loop closure. The plot shows the position estimate on which the two instances are showed with dots. The drift
along the 40 m flight is <1 m.
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