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Abstract—In this paper, we address the estimation, control,
navigation and mapping problems to achieve autonomous inspec-
tion of penstocks and tunnels using aerial vehicles with on-board
sensing and computation. Penstocks and tunnels have the shape
of a generalized cylinder. They are generally dark and featureless.
State estimation is challenging because range sensors do not yield
adequate information and cameras do not work in the dark. We
show that the six Degrees of Freedom (DOF) pose and velocity can
be estimated by fusing information from an inertial measurement
unit (IMU), a lidar and a set of cameras. This letter discusses in
detail the range-based estimation part while leaving the details of
vision component to our earlier work [1]. The proposed algorithm
relies only on a model of the generalized cylinder and is robust to
changes in shape of the tunnel. The approach is validated through
real experiments showing autonomous and shared control, state
estimation and environment mapping in the penstock at Center
Hill Dam, TN. To our knowledge, this is the first time autonomous
navigation and mapping has been achieved in a penstock without
any external infrastructure such GPS or external cameras.

I. INTRODUCTION

ICRO Aerial Vehicles (MAVs) equipped with on-board

sensors are becoming ideal platforms for autonomous
navigation in complex and confined environments. This is
due to the fact that these platforms are superior to ground
vehicles in terms of their ability to traverse the 3D space with
great ease. Application areas include, but are not bounded to
exploration [2], inspection [3], [4], mapping [5], interaction
with the environment [6], agricultural inspection, pest control
[7], search and rescue, and tactical engagement. Simultaneous
Localization and Mapping (SLAM) has been a major problem
of interest for the robotics society for more than three decades
[8], [9]. Various successful probabilistic methods [9] as well
as graph-based solutions [10] have been proposed that brought
the literature to the saturation point. As MAVs got more
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Fig. 1. The DIJI F550 platform with modified arms flying autonomously in
Center Hill Dam penstock, TN (Sec. II-B).

capable and more popular in the past few years, these versatile
devices became one of the standard application platform for
the SLAM problem. One can argue that the shift from ground
vehicles to MAVs is due to several reasons some important of
which are MAVs’ versatility, low-cost, ease of manufacturing
as well as their ability to easily traverse in the 3D space. In
this work, we introduce robust state estimators and a complete
system design on a MAV platform for autonomous inspection
and local mapping of dam penstocks.

The key research challenges in the proposed inspection
task are rooted in the lack of visual and geometric fea-
tures, complete lack of external illumination, wet and muddy
surfaces and steep inclinations (Fig. 1). The environment
is also symmetric which poses several challenges for local-
ization. Due to great oscillating loads coupled with aging
infrastructure, penstocks and dams require regular inspection
and maintenance. Lack of appropriate maintenance can result
in catastrophic consequences such as demolishment of the
structure, flood and fire. Conventional inspection techniques
include building scaffolds along the whole structure, a worker
swinging down from the tunnel gate or climbing along the
inclination using ladders. However, the conventional methods
are dangerous, potentially inaccurate, labor and cost intensive.
Our work addresses the inspection task with novel sensor
fusion algorithms for 6 DOF state estimation, control and map
generation as well as our custom-design hex-rotor platform
(Fig. 1). Our system functions autonomously inside a penstock
with the least user intervention from a GUI running on the base
station and no need for external illumination.

Relevant to our work are approaches focusing on sensor fu-
sion for 6 DOF state estimation and autonomous navigation of
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MAVs. Most of the recent work on SLAM focuses on utilizing
cameras and IMU both for indoor and outdoor settings. The
recent work [ 1] shows a small form-factor MAV navigating in
unknown environments using only a single camera and a high-
rate IMU. The authors fuse the sensory information in a central
Unscented Kalman Filter (UKF) for fast pose estimation.
While this work focuses on fast and accurate state estimation
for aggressive maneuvering, robustness is possible only in
environments with sufficient lighting and texture. In [12], the
authors integrate noisy measurements from multiple sensors
with different frame rates to obtain a globally consistent pose
estimate in real time. With a rich sensor pack that includes a
laser scanner, GPS receiver, stereo camera rig and an IMU,
the authors demonstrate a successful system design that can
attain robust control despite varying environmental conditions.
However, it relies on the 2.5D assumption and rich texture for
range and vision-based estimators respectively; both of which
do not hold inside a penstock.

Cameras provide rich data about the surroundings of the
robot which is invaluable for robust navigation. However,
bundle adjustment or graph-pose optimization may fail to
localize map points which in turn degrades the performance of
the pose estimation. [ 3] uses both depth and color information
for localization and mapping to overcome this problem. The
authors propose a method that can utilize both sparse or dense
pointclouds to augment each pixel with depth information for
camera motion recovery.

Direct visual SLAM has shown great potential in the past
several years. In [14], the authors demonstrate their tightly-
coupled monocular Visual-Inertial Odometry (VIO) method on
different datasets in real-time for indoor settings. This work,
however, heavily depends on rich texture for both camera pose
tracking and mapping which is very likely to fail in featureless
environments with poor lighting.

There are several other studies which focus on utilizing
various sensor combinations for MAV control and navigation.
[15] presents a comparative study on various approaches based
on RGB-D sensors. [16] uses a 2D laser scanner rectified with
a mirror setup and an IMU to navigate a MAV in multi-floor
indoor environments. Various studies focus on the application
of the SLAM problem to real-life inspection problems such
as [17], [18], [19]. In [17] the authors use a wheeled robot
equipped with a fish-eye camera to inspect natural gas pipes.
Also [18] and [19] use a MAV to inspect the interior of
an industrial boiler. These works use a stereo camera rig
and an IMU to autonomously traverse the boiler to collect
measurements. Finally, directly related to this work are our
previous contributions [3], [1]. However, these approaches
consider the use of multiple 2D laser scanners and linearized
controllers. In addition, a prior knowledge of the map and
structure was necessary. Also these studies didn’t allow any
shared control.

II. PRELIMINARIES
A. Notation

We define the world frame, W, with the unit vectors
{&W, gW, 2W1. 2W is defined to be anti-parallel to the gravity

e
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Fig. 2. Sample sketch of the tunnel from top-view with the hex-rotor MAV
shown at different poses. Reference frames are coincident with the robots and
{#®, 9P} labels denote body frames at each pose. Local frames are shown at
two different positions along the tunnel centerline with axis labels {Z%, §* }.
Projection of a point p"V is shown as x(p*V).

vector and 2" points along the axis of the tunnel at its
hover state. If the robot starts in the horizontal section of the
tunnel, 2" is coincident with the tunnel axis. Vectors in the
body frame, B, are defined with respect to the reference triad
{2®,9®, 25} where W and B are aligned when the robot is
hovering with zero yaw along the horizontal section.

We also define local frames at every point along the tunnel
axis that utilizes the uni-axial and symmetric shape of the
tunnel. The local frame is defined with the triad {#*, 5%, 2¢}
where #* and §* are tangent and normal to the tunnel axis,
X, respectively (Fig. 2). Furthermore §* is chosen such that
g“ @2W =0and 2° e 2% > 0.

Inter-frame transformations are carried through multiplica-
tion with the rotation matrix 2R 4. This matrix transforms a
point given A into B.

Finally, the robot state is defined as

r=[x" vl @ bl bl]", (1)

where x, v, ® are the position, velocity and orientation
expressed in Euler angles respectively, b, and b,, are the IMU
biases. In this work, we use the Z XY Euler angles convention.

B. DJI-F550 Platform

In this work, we use DJI’'s F550 frame with extended arms
and E600 propulsion systems!. It is equipped with a Velodyne
Puck LITE? lidar, four Chameleon3® cameras for imagery
collection and estimation, PixHawk* on-board controller and
IMU, and an Intel i7 NUC PC (Fig. 1). The platform is also
equipped with on-board LEDs to provide illumination. Each
camera is rectified with four Cree XHP-50° high-power LEDs
to provide on-board illumination The robot can fly for 10-
15 minutes with a 5000mAh 6S - 50C battery with the total
payload of 4.5 Kg.

C. Environment Assumptions

The environment is dam penstocks (Fig. 1). These structures
lack geometric features and texture for visual processing.
Furthermore, they are pitch-dark, uni-axial and axi-symmetric.

Uhttps://www.dji.com/e600

Zhttp://velodynelidar.com/vlp- 16-lite.html
3https://www.ptgrey.com/chameleon3-usb3-vision-cameras
“https://pixhawk.org/modules/pixhawk
Shttp://www.cree.com/xlamp/xhp50_2
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Fig. 3. The overall system diagram. The inputs to the system are sensory
information from the three different types of sensors and the user input through
the GUI. Local Mapper and Range-based Pose Est. uses the IMU and 3D
pointcloud to generate a local map of the tunnel and localize the robot within
that map. Camera Picker chooses one or more of the cameras and relay the
corresponding frames to the Visual Odometry block. Refer to our previous
work [1] for the details of Visual Odometry. The UKF fuses partial pose
estimates from each estimator block to obtain 6 DOF pose estimate.

The lack of geometric features poses challenges in estimation
of the robot pose in a number of degrees of freedom. In
particular, it is not possible to estimate the position of the
robot along the tunnel axis with range-based sensors for most
of the cases. Section-V shows snapshots of the raw lidar data
which depict this scenario.

I[II. METHODOLOGY

This section introduces the overall system structure and its
components in details.

A. Overall System Design

The system is composed of several building blocks which
include sensory inputs, estimators, controller and user inter-
face. Fig. 3 shows that the inputs to the system are IMU,
3D pointcloud and image data from the heterogeneous set
of sensors. The complete state estimation is carried with
loosely coupled range and vision-based estimators. Partial state
estimates from each estimator are then fused in a central UKF
providing 6 DOF state estimate as well as the IMU biases
defined in Equ. 1 [12]. We implemented a shared controller
such that the user can give high-level way-point commands
using a joystick or the GUI application running on the base
station.

B. Surface Normal and Uncertainty Estimation

We introduce the main algorithm, based on the Velodyne
Puck 3D lidar sensor for 5 DOF state estimation and local
mapping. The remaining DOF is the robot position along the
tunnel axis. It is either left to the operator control as explained
later in Section IV or estimated using the optical flow approach
explained in our previous work [1]. This and the subsequent
sections explain in detail the blocks Local Mapper and Range-
based Pose Est. depicted in Fig. 3.

Range readings beyond a certain range are not dense enough
for accurate surface normal estimation. For this reason, we use
only the subset of the pointcloud at most r* distance from the
sensor origin. We define the resulting pointcloud as P* (Fig.
4(a)). In our tests, r* ranges from 5 to 12 meters.

The surface normal estimation is at the core of the range-
based estimation process. Surface normals are used to estimate

local axes of pointcloud segments. The axis of a segment is
estimated to be the vector which is perpendicular to all of its
surface normals in the least squares sense. Unless otherwise
stated, the calculations below are carried in the Velodyne
frame, V. We define the normal of the point P}, n}, as the

eigenvector corresponding to the smallest elgenvalue of the

matrix A pr [20] defined as
{jps} =1 | 1P =P <ra 2
Py = Py (3
‘ |{JP*}| 2
jelipy}
1 * *
AR = e H > (Pj —pp)(Pf —pps) @)
i€{ipy

where {j p;} is the set of 1ndices, J of the points P} which
are at most 75 distant from P;*. For radial search we use the
Kd-tree implementation of the PCL framework [21].
We also estimate the uncertainty of 7}, by propagating the
uncertainty of each point as [22]
-1

on -1 gax T
ma = | 2 OP; (EPJ*> OP; ®)

je{jpi* }

where X Py is the uncertainty of point P;. Point uncertainty
is given as

Sp = VRer S5 PRy (©6)
where E%; is the uncertainty of the corresponding point in

the frame P that relates to 'V through

cos(fB) cos(a) —cos(f)sin(e) —sin(p)
VRPE« = sin(a) cos() 0
sin(f) cos(a) —sin(B)sin(a)  cos(B)
(7

where [ and « are the elevation and azimuthal coordinates of
* in 'V respectively. The uncertamty of this point as defined in
the frame P is taken as X7 P = ||P*H2 dzag[ ol 05, 05|
where || - ||2 is the L2 norm, 02,02 and 05 are the uncer-
tainties m the range, azimuthal and elevatlon angles per unit
range. IR P* models the measurement uncertainty to be linearly
increasing with the range reading. Note that, we are following
the convention that vector and uncertainty matrix are defined
in the frame V unless another frame is explicitly expressed in
the equations as stated earlier.
In order to complete the derivation of normal uncertainty,

Ysr, we have to determine the Jacobian On;  Let A; be the

BP*
smallest eigenvalue of Ap- with the correspondmg eigenvec-

tor &; = f;. BEach column of the derivative of 7] is given as
[23]
on; 1 + OApr
S = - A —n 8
0P, e~ 2% o,

where J is the identity matrix, o' is the Moore-Penrose inverse,

Py, is the ' component of P} with ¢ € {z,y, z} and
8AP1_* _ [P-;-k — Kpy, 0, O]T + [ P; — KUpPy, 0; 0]
opP;,

{jps}|

(©))

2377-3766 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/LRA.2017.2699790, IEEE Robotics

and Automation Letters

4 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED APRIL, 2017
R £/2 2/2 £/2 l/2 = *
¢ L = v,
R S ZP@‘*\ o o’ NopR o e 0...000—29002e0 ¢354 ,° Rl
® 049 .'.'.'..’..}' Y ‘\/
; 0 L0 201
2}3* | R OIZL ZL‘ X_J‘Oél
Y L LR i Ol o~ . ,_,_,1/‘IL1
__Q(j___ | '——" ijl';k‘— v" « an //,/ a0 - O ZE
R R - L LS .
Yok o i e\ .
el © Gee Zeseeo e
® 0g 90 "'..'.\'/‘.' c00q ® ! . o0 g 00 ©
Tunnel Side View Eﬁi/‘/ P *,” P 0 Tunnel Side View P 1

(a) This figure illustrates pointcloud data (blue circles) from inside a
penstock plotted in side-view and the initialization step of the local
frame and segment estimation process.

(b) This figure shows the results of two iterations of local frame and
segment estimation.

Fig. 4. Algorithm 4 illustrated. These figures explain the components of the range-based pose estimation and the local mapping algorithm.

OAp: [0, P¥—pp, 017 +[0, P —pps, 0] (10)
oP;, iy}
aAPi* o [07 07 PJT"—/],P; ]T+[07 0» P;_;U'Pi*] (11)
oP;, Hir; 3
Finally, the Jacobian matrices

on’t 1

b = —— (NI — Ape)f

oP;  Hijrr} (Ai )

OApx OApx 0Dpx
| Fmian weian gmiar]  (2)

can be plugged into Equ. 5 to propagate point uncertainties
into normal uncertainties.

Fig. 4(a) illustrates the definitions introduced in this section.
Points farther than r* meters from the sensor are drawn in
light-blue and never used in the subsequent calculations. The
inlier data (blue points) is denoted by P*. Some of the points
are overlaid their corresponding uncertainties formula of which
is given in Equ. 6. Normal vectors of each point are plotted
in orange. Uncertainties of sample normal vectors are also
plotted in light-orange formula of which is given in Equ. 5.
This figure also illustrates o* and £* further details for which
are provided in the following sections. Briefly, a* is the initial
tunnel axis estimate perpendicular to all the normal vectors in
the least-squares manner. Its uncertainty is denoted as X,-.
An initial local coordinate frame is defined using o* given by
the unit vectors £* := {&*", %", 2" }. The origin of £* is
coincident with origin of V at O*.

C. Pointcloud Segmentation and Surface Fitting

The Field of View (FOV) of the Velodyne Puck along
the elevation dimension is very narrow (415 degrees), which
imposes a significant constraint on sensing and modeling its
surroundings. However, using the symmetry of the tunnel, we
can extrapolate the pointcloud data in order to get a parametric
representation of the tunnel surface. In a practical sense, fitting
cylindrical segments to the pointcloud results in a 360 degrees
FOV around the tunnel axis. As opposed to direct pointcloud
matching algorithms such as [24], [25], this method does not
suffer from data association problems due to non-overlapping

FOVs between different laser scans. Furthermore, this can also
be used to get depth estimates of image features with zero
latency.

1) Overview: The segmentation and mapping process is
an iterative algorithm with can be summarized as initialize-
refine-recur until all the points in P* are consumed. P* is the
pointcloud obtained after radius filtering applied on the raw
data, P, as explained in Section III-B. At this point, we also
have to provide the definition of a segment S. Segment, S*,
with the index s € {x,0,+1,£2,...} consists of a local frame,
L, origin, O¢ and a pointcloud P* (i.e. S® := {L£° 0%, P*}).

The first step is to use the pointcloud, P*, to initialize
a rough, but reliable, initial local coordinate frame which
consists of £* and O* = 0. In order to define £*, we first
have to estimate the local tunnel axis «*, which is found
as the eigenvector of M = (WN)T(WN) corresponding to
its smallest eigenvalue as explained in Algorithm 1 where
N is |P*| — by — 3 matrix with N; = n] and W is the
diagonal weighing matrix with W; ;) = e~ (F1/m)?, Here, &
is the curvature at P* which is defined as the ratio of the
smallest eigenvalue of A py to their summation [20] and 7, is
a constant which we choose to be in the range [0.1,0.3]. W
assigns smaller weights to points at high curvature regions.
We can then use the procedure explained in Sec. II-A to
construct the frame £* := {#*", %", 2" }. This process is
also illustrated in Fig. 4. Note that the same procedure can
easily be adapted for local axis estimation by assigning s
to either {0,+1,+2,...}. Then, S* is used to initialize the
segment SO := {£° O° PY} (Fig. 4(b)). The initialization is
followed by parameter refinement and outlier rejection (Sec.
II-C3). These steps are recursed to obtain S' and S(—1)
where the sign denotes the forward and backward direction
with respect to the tunnel axis. The process continues until all
the points in P* are either segmented into tunnel sections or
marked as outliers.

2) Segment Initialization: Segment initialization is handled
differently for the cases s = %, s = 0 and |s| > 0. The first
case, s = %, is explained in the previous paragraph. S° is
initialized with £0 = £*, OY = O*. PY is defined to be the
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Algorithm 1: £ = EstimateLocalFrame(P, n, ¥Xp)

1 while ¢ < |P| do

2 Ni = 7¢L7T )

3 | evals = eigvals(Xp,) ;
4 | k; = min(evals) /> evals; // Curvature at P; [20].
s | W(i,i) = e (/)"

6 end

7 // get the eigenvector for the smallest eigenvalue

8 a = min (eigvecs (WN)T(WN))) ;

9 return £ = defineFrame(a) // see Sec. II-A;

Algorithm 2: P,,; = SegmentPointcloud(P, £, O, £)

1 while ¢ < |P| do
2 | PF=*Ry(P,—-0);
if | P5,| < */2 then
A Pout = Pour \J P; // expand pointcloud
en
return P,,; ;

set of all points that satisfy |PZ*§O| < ¢/2 where

P’ = Ry (PF - 0). (13)

For other cases, |s| > 1, the coordinate frame is initialized as
L% = L% and O° = 0% +sign(s)-£-#*" (Fig. 4(b)) where
s7 = s — sign(s) for s £ 0 and s~ = x for s = 0. P*® can
be obtained the same way as P through proper coordinate
frame substitution in Equ. 13. Pointcloud segmentation is also

explained in Algorithm 2. In our tests, we choose ¢ to be in
the range of [0.10 — 2] meters.

3) Segment Refinement: The quality of segment initializa-
tion is dependent on the estimation quality of the previous
segment, S5, as well as the noise level of sensory data
which is not guaranteed for certain cases. For this reason,
initialization is followed by refining the point set P® as well
as the coordinate frame definitions £° — O° through outlier
rejection and refitting the model iteratively until convergence.
The two assumptions we use for outlier detection are the agree-
ment of local surface normals, 7§, with the local tunnel axis,
«?, and the cylindrical surface model. The former assumption
eliminates points with incompatible surface normals to obtain
more accurate local frames, £° and the latter removes regions
of the pointcloud that do not comply with the cylindrical
surface assumption due to objects such as scaffolding and
operators.

Outlier rejection based on the surface normal assumes that
each normal, 77, is perpendicular to the local tunnel axis, o®.
This condition is written as |2 e a®| < 7;. We choose 75 to
in the range of [0.1, 0.25]. Both the surface normal compliance
assumption and the low weight assignment to high curvature
regions (Algorithm 1) for tunnel axis estimation, give robust
local frame estimates.

We use the points in P*® to fit a cylindrical model, C*?,
assuming that the tunnel has parametric cross-section which is
circle in this case. C*® is defined with its origin, OZ, axis length
and radius, R®. Axis length is always equal to the segment
length, ¢. In order to simplify the model fitting problem, we use
the fact that, for a reasonably well estimated local frame, £°,

Algorithm 3:

Sout = RefineSegment(S, 7, Xp)

1 [PL,0]«<= S

2 while outer_iter < outer_iter, 4, do

3 | while inner_iter < inner_iter,,q, do
4 L = EstimateLocalFrame(P, n, Xp) ;
5 a=L;;

6 while i < |P| do

7 if |7; @ | > 75, then

8 A P = P\P;; // remove P; from P
9 en

10 | end

11 | while inner_iter < inner_iter,,q,, do
12 while ¢ < |P| do

13 p=*Ry (P —-0);

14 ArL = [ pi,ya Di,z, 1 } 5
15 bi = — (piy® +pi:%) s
16 end

17 f=Afb;

18 Oc,z:()’ Oc’y:—fl/Q’ Oc,z:_f2/2;
w | |Re VA6
20 while i < |P| do

21 p=*Ry (P —0);

2 if |1 — lPw,»)ll2/R| > 7R then

23 A P = P\P;; // remove P; from P
24 en

25 | end

2% |0=0+(YRe) O, ;

27 end

28 return S = [P, £, 0] ;

the projection of the points P onto the local y — z plane will
form a circle. Then the parameter estimation can be formulated
as a linear regression written as

Ai = [ Piy, DPi,z, 1 ] (14)
bi = — (piy® +pi2") (15)
f=A" (16)

where p; := Pf"/“ *, f is a 3-vector. The center and the radius
of C? are found as

8,L° 1
OC:(L;/,Z) = _5[ f17 .f2 ]T a7
R =/ (57 +s3)6— f3 (18)

where Oi;fs = 0 by definition. Note that the model centers
are defined in their corresponding local frames hence the
superscript £°. In order to simplify the notation, this point
on, we will drop the frame label from model centers. At each
refinement step, the model center, OF, is used to update the

local frame origin, O°. The update is written as
0% <= 0% + (VRe:) O (19)

This equation indicates that the model center and the local
frame have to be aligned due to the cylindrical cross-section
assumption. This always holds in straight sections of the tunnel
whereas ¢ should be chosen to be smaller as the curvature of
the tunnel increases, such as around bends.

The second outlier rejection uses the cylindrical surface
assumption. Points that are far from the surface are marked as
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outliers. This criterion is given as

s,Ls
PG e

e 20)

S TR
where R is the radius of the C?, HP;(jz)Hz is the L2 norm
of the point P as written in the £° frame projected on to
the local y — z plane. The latter can also be interpreted as
the distance of the corresponding point from the tunnel axis.
Tg is a constant that is in the range [0.1, 0.2]. The refinement
process is also explained in Algorithm 3.

Algorithm 4: {S} = BuildLocalMap(P)

P* = RadiusFilter(P) ; // Sec. IlI-B & Fig. 4(a)
[A*, ¥ p«] = EstimateSurfaceNormals(P*) ; // Sec. III-B
L* = EstimateLocalFrame(P*, n*, X p«) ; / Algo. 1
0*=0;
s=0;
while P* # 0 A |s| <S40 do
// Sec. 1II-C2
[£%,0%] = InitializeSegment(P*, L5 , O° ) ;
S* = RefineSegment(P, £*, 0%, n°, Xps); / Algo. 3
s+ +3
end
return {S} ;

o0 A U AW N -

—
N -

Fig. 4(b) illustrates the segment initialization and refinement
steps. In this figure, the green and light-blue shaded rectan-
gles designate the regions of each local frame, £° and £!
respectively. Points belonging to each region are denoted as
PO and P'. The algorithm starts with the initialization step
as illustrated in Fig. 4(a). The points inside the shaded region
in Fig. 4(a) are then used to refine the local frame estimate
£0. After the refinement, we obtain {#£°, 7%, 24"} and ©°
defined in V. Then, a cylindrical surface is fit to P° with
all the corresponding parameter uncertainties as explained in
the following sections. Once the 0 segment is processed, an
initial guess for O and o' is made by extrapolating o by +1
meters. This guess is then refined to obtain {#°",§%", 5"}
and O! using the point set P where P! consists of all the
unused points that are at most /2 meters away from the gle—

~rl
2% plane.

D. Uncertainty Estimation of Local Frames

We estimate the uncertainty of o® by propagating normal
uncertainties through the equation

da’ 1 08T
ie{Ps} v v

-1

Soe =

2y

where the summation is over all surface normals contributing
to the estimation of «®. The partial of o® with respect to
the normal n; is calculated in a similar way as the normal
vector partials. Let \; be the smallest eigenvalue of M with
the corresponding eigenvector é; = a°. Each column of the
derivative of o® is given as [23]

da*

i,C

on; .

of (22)

where J is the identity matrix, 7{, is the ¢! component of

7f with ¢ € {z,y, 2} and

,C

oM s .
g, = W (71, 0. 017+ (47, 0. 0)) 23
oM s s
gy, = Wi (10, 21, 017+ [0, 21, 0]) (4
oM s »
Ons = (Q’i,i) ([ 0’ 07 n; ]T + [0’ 07 n; D . (25)
The Jacobian in the above equation may be written
Ao OM s OM s  OM s
=(\J — M| St 2o, SEaf |
8ﬁf ()\zj M) |: 8n7T Sniyy aniyz :|
(26)

This can be substituted in Equ. 21 to get > ,s.

E. Robot State and Its Uncertainty

Robot orientation can be estimated only with the presence of
an IMU since roll and pitch angles, {¢, 0}, are not observable
to the range scanner. We integrate the rotational velocity from
the IMU in our UKF and also use gravity vector to eliminate
possible error accumulation in the orientation for roll and
pitch estimation. We use the formulation given in [12] for
UKF. This method works very accurately in non-aggressive
flights, which is the case in our application. Assuming that
IMU and Velodyne frames are aligned, we can use the IMU
to infer the transformation between the Velodyne frame, V,
and the world frame, W, as W Ry = Rot(6, ¢). Then robot’s
yaw angle, ¢, can be obtained from a®¥ = (WRy)al
as ¢ = —atan (o) /a2") defined in the local tunnel axis.
This equation holds when the robot is heading forward,
7P e4% > 0, and the tunnel is not vertical, which is consistent
with the geometry of most penstocks. The uncertainty in i can

be estimated by propagating the uncertainty in o as

-1
81/) -1 87/} T
W w
= (00[07“7 (Eo‘g,y) 90 W 27
where
0 1
;{)W TPCA [ o)™, —al™ ] (28)
dazly lazy" [|2

which completes the derivation of ZZ}V.

We prefer defining the position of the robot with respect to
local the origin, ©O°. This offers an intuitional way of defining
way-points for the controller making the estimator immune
to drifts in vertical and lateral positions, r, .. The lateral and
vertical coordinates are found as r“,f . = — (WRV Oo)y‘z.

The uncertainty in r, ., is a linear transformation of the
uncertainty in the y— z coordinates of 09, Zog o which writes

(all in £°)
000 1 (000 \"
ie%;o} opy (EPE) opP)

EO?,,Z =

(29)
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where
00y, 00y, of 0
opy? of opPy?
of 4 0b 04
apy A (3on azz.of> (31)
and
0A 0A 0A
o, =" apy, =% gpy =0
ab ob 5o b 0
87[—710@ = 0, 8P3y - 726170Pi,y’ aPZ(?Z = 26170Pi,z?
009 90
R /|
8f /2[17070]7 8f /2[07 170]

and 6;; is a zero matrix except that it is 1 at (¢,7). We

can obtain the uncertainty of (‘)2 . 262 , by substituting
, o

the above equations. This is transformed into W as 229”0 =

WR, 6 £'Ryy where ©'R) is the 2-by-2 lower-right
block of © Ryy. One should note that we silently assumed
that ©O% = O° which is valid for successful cylinder fitting.

IV. ESTIMATION AND CONTROL

In this section, we briefly present the estimation and con-
troller pipelines of our platform. To enable on-board control, a
UKEF is used to estimate the full state r of the vehicle, defined
in Sec. II-A, at the IMU rate. We embrace the formulation
given by [12] for the UKF and IMU integration. The prediction
step uses the input translational acceleration and angular veloc-
ity measurements given by the IMU, whereas the measurement
update is the pose provided by the localization information
discussed in the previous section. The control of the hex-rotor
platform is composed of an attitude and a position controller.
In most previous works, a back-stepping approach is used for
control because the attitude dynamics can be assumed to be
faster than the position dynamics, and linearized controllers are
used for both loops [26], [27]. In this work, for robustness,
we use a nonlinear controller based on [28], [29]. The control
inputs for the system are the thrust 7 and the moments around
the rigid body axes M. They are chosen as

M:—kReR—erQ“r‘QXJQ—

J (QRTRCQC - RTRCQC> , (32)

T =(—kye, — kye, + mges + m%,) - Res,

with X4 the desired acceleration, k,, k,, kg, kq positive
definite terms. The quantities eg,eq,e,,e, are the orienta-
tion, angular rate, and translation position and velocity errors
respectively, defined in [28], [29], [30] and obtained using the
information from the UKF estimator. The subscript C' denotes
a commanded value and J is the inertia matrix. If the initial
attitude error is between 90° and 180°, the zero equilibrium
of the tracking errors is almost globally exponentially attrac-
tive [28]. Our shared control approach allows the user to take
over the control along the tunnel axis if required. In this mode,
the user directly controls the robot pitch, while the platform

Fig. 5. Screen-shot from the RViz visualization tool showing the robot flying
with shared control along the horizontal section of the tunnel. The colored
point cloud and their corresponding meshes demonstrate the output of the
segmentation and the cylinder fitting algorithms. The robot is shown with a
red CAD model at the very center of the meshes.

Fig. 6.  Screen-shot from the RViz visualization tool showing the robot
flying with shared control along the inclined section of the tunnel after ~ 20
seconds after the robot state in Fig. 6. The algorithms does not require any
modifications to handle the transition between the horizontal and the inclined
section.

motion is constrained along the main axis regardless of the
inclination.

V. EXPERIMENTAL RESULTS

In this section, we report on the experiments performed at
Center Hill Dam (CHD), TN. The goal of our experiments is
to show the robot can autonomously navigate to the end of the
tunnel, concurrently reconstructing the local environment. The
vehicle starts at an arbitrary point in the horizontal section and
traverses the tunnel until the end of the inclined section. The
transition between the horizontal and the inclined sections are
handled successfully. At CHD, the tunnel is approximately 80
m. long. The local maps can be merged to form the complete
map of the tunnel by integrating the optical flow based velocity
estimates which we leave as future work.

The flight starts with the operator commanding the robot to
take off. In order to reduce vortex formation when in close
proximity to walls and to maximize the image brightness, we
command the robot to align with the center-line (ry ., = 0).
Then the operator can command the robot to go forward
or backward along the tunnel through the GUI. The RViz
visualization shows the sensory data such as video stream and
pointcloud as in Fig. 5, 6 to the operator in real-time. This
interface allows the operator to direct the robot even when the
robot is outside the field of view of the operator.

In the experiments, we command the robot to fly along
the center-line (ry ., = 0). The robot closely follows these
commands as shown in Fig. 7 except for oscillations and a
constant offset in r, due to imprecise parameter tuning. This
proves the accuracy of the proposed estimator.
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Fig. 7. Vertical and lateral position, ry, -, of the robot flying during two different tests

standard deviation scaled by 100.

The diameter of the penstock is 5.5 meters and our algo-
rithm could estimate it within a 5% error. We refer to our
previous work, [1], for details of the visual odometry and its
results due to brevity and limited space.

VI. CONCLUSION

In this work, we present a new approach for state estimation,
mapping and shared control with MAVs in tunnels. The key
components are the range-based localization in a parametric
cylindrical environment, local mapping and shared control.
The on-board controller uses the feedback from the estimator
to drive the robot to the end of the tunnel while allowing
shared control with an operator. Our results show the capability
of autonomous navigation in penstocks and tunnels, and the
capability to concurrently map the local environment.

Future work will consider image analysis algorithms to
provide a panoramic visualization of the environment and
the capability to automatically identify regions that require
maintenance. It is also in our interest to consider navigation
in longer tunnels with branch-off and merging sections.
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