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Abstract—In this paper, we consider state estimation and local
mapping with a Micro Aerial Vehicle (MAV) inside a tunnel
that can be modeled as a generalized cylinder, using a 3D lidar
and an Inertial Measurement Unit (IMU). This axisymmetric
environment poses unique challenges in terms of localization and
mapping. The point cloud data returned by the sensor consists
of indiscriminate partial cylindrical patches complicating data
association. The proposed method reconstructs an egocentric
local map through an optimization process on a nonlinear
manifold, which is then fed into a constrained Unscented Kalman
Filter (UKF). The proposed method easily adapts to different
diameters, cross-sections and changes in center line curves. The
proposed approach outperforms our previous contribution [1]
in terms of mapping quality and robustness to non-cylindrical
cross-sections. Our motivation is to automate the labor-intensive,
dangerous and expensive inspection of penstocks with the least
operator intervention. We present experimental results obtained
in Center Hill Dam, TN to validate the proposed approach.

Index Terms—Aerial System Applications, Field Robots, Map-
ping & Localization

I. INTRODUCTION

MULTI-ROTOR Micro Aerial Vehicles (MAV) have be-
come popular robotic platforms in the last decade due

to their manufacturability, agility and diverse payload options
[2], [3], [4]. MAVs are well suited for a number of application
areas including inspection, air delivery, surveillance, search
and rescue, real estate, entertainment and photography to name
a few. MAVs are especially attractive for inspection tasks
because of their ability to access hard to reach spots inside
mines, penstocks, bridges, ship vessels and other industrial
infrastructure.

Simultaneous Localization and Mapping (SLAM) [5], [6],
nonlinear control [7], path planning and navigation [8] prob-
lems have been extensively studied on these platforms. MAVs
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Fig. 1: (Left) Custom-designed hex-rotor platform hovering
∼ 4 meters from the gate in shared-control mode. (Top-right)
FPV camera snapshot showing the gate and the water gush.
(Bottom-right) CAD model of a penstock at Center Hill Dam,
TN.

optimized for higher payload capacity, yet lightweight and
small enough for indoor applications, allow researchers to
equip them with different types of sensors such as color and
RGB-D cameras, 2D/3D lidars, IMU and GPS units [4], [9].
Unlike earlier studies on SLAM which focus on inferring
the world state from a single type of sensor [6], [10], the
emergence of MAVs that can move freely through 3D space
equipped with a range of sensor modalities, has led the
robotics community to develop more sophisticated algorithms
[1], [11], [12].

This work focuses on state estimation and local mapping
for an MAV equipped with a 3D Lidar and an IMU for au-
tonomous navigation inside penstocks (Fig. 1). We model the
environment as a parametric piecewise-smooth-generalized-
cylinder (PSGC) [13]. The significance of this assumption
hence the particular solution we propose is due to our con-
viction that most of the range-based methods that rely on the
presence of geometric cues would fail in similar environments
[11], [14]. Although we present results from a single penstock,
the proposed principles should not be thought to be peculiar
to this infrastructure. They can be used in other environments
which exhibit PSGC structure such as mine shafts, caves and
sinkholes, highway tunnels and building corridors (Fig. 2).

Penstocks are pitch-dark tunnels with diameters ranging
between 3.5 and 20 meters and lengths between 70 and 250
meters with no geometric features except for changes in the
bending profile and tunnel diameter (Fig. 1). Our claim is
that uniaxial, axisymmetric and featureless tunnels can be
mapped with better accuracy and robustness if represented as
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Fig. 2: Illustrations for various piecewise-smooth-generalized-
cylinder (PSGC ) shaped environments. The center line curves
of the right two topologies are piece-wise functions.

a parametric PSGC compared to the common choice of raw
point cloud representations. We make use of the geometric
properties of the assumed cylinder environment to impose
consistency between the segments of a PSGC. We attain this
objective through a constrained UKF [15] that allows us to
estimate the pose of the vehicle and the local map of the
environment on a nonlinear manifold, through a constrained
nonlinear optimization on S2 × S2 for fitting parametric seg-
ments from raw point cloud data and a Bernstein interpolation
for data association. A novel feature of this work is the use
of spherical data analysis tools from the directional statistical
literature for noise filtering and constrained optimization on
S2 [16], [17].

In our previous work [18], we used a single 2D lidar
rectified with a mirror setup to reflect a subset of its rays
to the ceiling and floor, and in our other study [9] two 2D
lidars one of them sweeping the ground and the other facing
forward. However, with only 2D slices from a 3D environment,
the map and state inference problems become infeasible unless
the map is known a priori. In our recent work [1], we used the
same 3D lidar as in this work without imposing smoothness
constraints on the PSGC segments.

In this work, we overcome several fundamental limitations
of our previous work. First, we model the uniaxial, axisym-
metric tunnel as a parametric, deformable piecewise-smooth-
generalized-cylinder (PSGC). This imposes constraints on the
measurement model and prevents the state from diverging.
Second, we use the Watson distribution, a statistical tool
that can model axially symmetric distributions on Sp, which
has not been exploited by the robotics community to our
knowledge. We use this tool for outlier elimination on S2 and
to preserve consistency between local map segments especially
when the circularity assumption does not hold. Third, we
integrate sensory information for both pose and local map
estimation in a UKF running on a manifold. Finally, to our
knowledge, this is the only MAV system that works in PSGC
environments.

II. RELATED WORK

After more than a decade of research on MAVs, they have
become an important robotic platform employed in many real-
life applications. The authors of [19] describe an interesting
field study which uses an MAV to inspect ship vessels. This
study proposes an automated solution for visual inspection
of internal and external regions of a ship hull using a 2D
lidar, IMU and a downward facing camera. However, this work
makes strong assumptions about the planarity of the floor to

simplify the visual odometry problem which may cause issues
when flying on curved surfaces.

In an industrial boiler inspection scenario, [20] uses a
quadrotor equipped with an IMU and a stereo rig tightly
coupled to estimate 6 Degrees Of Freedom (DOF) robot state.
Equipped with on-board power-LEDs, the platform does not
require any external illumination for the on-board cameras
to work. However, the researchers rely on the existence of
significant texture on the boiler walls which is not the case
inside a penstock. Penstocks are usually coated with tar to
prevent rusting and offer very weak texture. In a similar study,
the authors of [21] inspect mine shafts with an MAV con-
trolled manually to evaluate its performance under challenging
conditions. The authors post-process the data collected with a
2D lidar and a stereo camera rig to reconstruct the vertical
mine shaft. This methodology requires an expert pilot and is
applicable as long as the pilot has clear view of the platform.
In another inspection study [14], the researchers use a pair
of rotating 2D lidars to map a 17 km long mine shaft. This
is perhaps the closest study to ours, but in this case the mine
walls have enough geometric texture to offer information about
the motion along the shaft axis which is not the case inside a
steel or concrete penstock.

3D mapping of cluttered environments and state estimation
of MAVs is often studied using either a 3D lidar or a 2D lidar
mounted on a rotating base. [22] uses the latter hardware to
map both indoor and outdoor environments with a feature-
based point cloud registration technique. The authors report
that their estimator experiences very low drift and is not
demanding in terms of CPU power despite the complexity
induced by integrating each 2D range reading at different
times due to the hardware setup. This method is, however,
not applicable in our case due to the lack of geometric
features inside a tunnel. In [23], the authors propose an MAV
system that relies on an on-board RGB-D sensor and an IMU
to estimate the robot state and map its surroundings. The
proposed system is mostly relevant to indoor settings due the
limited sensing capability of the RGB-D sensor. This work
also demonstrates path planning and navigation using the 3D
occupancy grid map previously generated by the robot.

III. PRELIMINARIES

A. Environment

A penstock has a well-defined geometry rarely encountered
in other indoor settings that needs to be characterized in
particular. Binford first introduced the notion of a generalized
cylinder (GC) in 1973 [24]. This became popular in robotics
after Brooks’ work in 1983 [13]. In this work, we have chosen
to model penstocks, as a generalization of an ordinary cylinder
where the center axis can be any continuous spine and its
radius may change along the axis (Fig. 2). This environment
poses unique challenges for an on-board state estimation
system because of the axial symmetries. Except for a small
volume close to the distal ends of the tunnel, a lidar-based
estimator cannot sense position along the tunnel axis. Also
the only source of roll and pitch angles is the IMU due
to symmetry. Lastly, auxiliary sensors such as barometers,
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magnetometers are often affected by vortices generated by
propeller down-wash and metal structure respectively. We
showed in [9] that cameras with on-board illumination can
be an option if the tunnel surface has visual texture.

There is typically a vertical gate at the upper end of a
penstock which the robot should sense to infer completion of
an autonomous traversal. A sample CAD model of a penstock
is given in Fig. 1.

B. MAV Platform

The challenges and specifications of the task require de-
sign of a custom MAV platform. We use DJI F550 frame1

with extended arms that allow using DJI E600 propulsion
system2 to obtain a high weight to thrust ratio. The total
weight of the platform is approximately 4.5 kg when equipped
with a Velodyne Puck LITE 3, a Pixhawk autopilot 4, a
5th generation Intel i7 NUC board, a 6S 5000mAh 50C
LiPo battery and a custom-designed power distribution board.
Although we do not use in this specific scenario, the robot also
carries 4 Chameleon3 1.3MP color cameras5 and high-power
Cree LEDs6 for on-board illumination and imagery collection
(Fig. 1). The total flight time is more than 12 minutes for non-
aggressive flights.

C. Robot State and Local Map

This section explains the choice of robot state and local map
representations. The reader should be aware that this work
estimates the local map only. The robot state is defined as

x> = [ r>, ṙ>, q> ] (1)
consisting of position, velocity both along the tunnel cross-
section and orientation respectively. State uncertainty is de-
noted as Σx.

We model the local map, M, as a deformable
PSGC consisting of segments, {Si}, with fixed inter-segment
Euclidean distance. A segment is defined by its position, local
tunnel axis and radius which respectively is written

S> = [ k>, t̂
>
, ρ ] (2)

where k ∈ R3, t̂ ∈ S2 and ρ ∈ R. Segment uncertainty is
denoted as ΣS .

We index the segment closest to the lidar with 0 and
others after and before this with positive and negative in-
dices respectively. Thus a local map is written as M =
{· · · ,S−2,S−1,S0,S1,S2, · · · } (Fig. 3). To refer to adjacent
segments to Si, we use the short-hand notation of Si+ and
Si− where i+ = i+ sgn(i) and i− = i− sgn(i).

There are three frames we use throughout the paper which
are the world, W, local map, M, the body, B, frames. We
assume that the IMU, 3D lidar and body origins are the same
for the sake of clarity. We often explicitly denote the frame at
which a variable is represented at as xF. The reader should

1https://www.dji.com/flame-wheel-arf
2https://www.dji.com/e600
3http://velodynelidar.com/vlp-16-lite.html
4https://pixhawk.org/modules/pixhawk
5https://www.ptgrey.com/chameleon3-usb3-vision-cameras
6http://www.cree.com/xlamp/xhp50 2

Fig. 3: An illustration of the three frame definitions, B,M
and W with segments shown with shaded boxes and their
corresponding position and local axis tangent estimates.

assume B when a frame is not explicitly mentioned. Fig. 3
illustrates these frame definitions.

Since we cannot estimate robot position along the tunnel
axis with the current sensor package, W cannot be set to a
fixed physical point in space. The only globally sensible DOFs
are roll and pitch due to the IMU. Hence W and M differ only
by roll and pitch angles.

D. Watson Distribution on S2

The statistical tool most often used in regression and esti-
mation problems is the normal distribution which is designed
for Euclidean space. Although under certain circumstances and
with appropriate assumptions, random variables on manifolds
can be analyzed with this tool, we believe that the directional
statistics literature has better tools deliberately designed for
spherical data. Because of this, we use Watson distribution on
S2 (Section 9.4 in [16]) to describe the set of possible tunnel
axis tangent estimates as well as to perform outlier elimination
which will be covered in the subsequent sections. For this, we
keep track of surface normal distributions of each segment, Si.
We refer to the Watson distribution parameters corresponding
to Si as {µi, κi} or shortly use W i and W i

m.
The density of Watson distribution which yields the prob-

ability density over the set of direction vectors x is written
as

W (±x,µ, κ) = M

(
1

2
,
d

2
, κ

)−1
exp

(
κ(µ>x)2

)
(3)

where µ is the mode, κ is the concentration parameter and
M (1/2, d/2, κ) is the Kummer function which is

M

(
1

2
,
d

2
, κ

)
= β

(
d− 1

2
,

1

2

)−1 ∫ 1

−1
eκt

2

(1− t2)
(d−3)

2 dx

(4)
where d = 3 for the S2 case (we will use M for clarity)
and β is the beta function. The Watson distribution takes
the form of a bipolar distribution for κ > 0 and becomes
a girdle distribution for κ < 0 [16]. Different synthetic data
distributions are shown in Fig. 4.

The problem of estimating the most likely local tunnel axis
tangent relates to finding the mode of a Watson distribution.
When κ ≥ 0, the likelihood of a point, p, being the mode is
the same as the distribution itself, i.e. Wm = W (±p,µ, κ).
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Fig. 4: Synthetic data on S2 sampled from uniform, girdle and
bipolar distributions.

However when κ < 0, the mode likelihood becomes

Wm(±p,µ, κ) =
2

M

∫ π

0

exp
{
κ
(

1−
[
µ>p

]2)
cos(θ)2

}
dθ

(5)
which is an integral over the great circle perpendicular to p.
Since these integrals are prohibitively time demanding, we use
lookup tables in our implementation.

E. Point Cloud Processing

Accurate surface normal estimation plays an important role
in the proposed method since segment fitting is formulated as
an optimization problem with its cost function dependent on
normals and local curvature as explained in the subsequent
sections. We use the method presented in [25] for surface
normal and curvature estimation. This method calculates the
mean and the covariance of the k-nearest neighbors for a
given point and takes the eigenvector corresponding to the
smallest eigenvalue as its local surface normal. The ratio of
the smallest eigenvalue to the summation of all three is taken
as the curvature at the point of interest [1]. Nearest neighbor
search is sped up using space partitioning techniques. We also
apply a voxel filter on the raw point cloud to reduce the point
count and save CPU time.

A single frame, raw point cloud reading from the lidar is
denoted as P and its subset, not necessarily exclusive, used in
fitting a segment, Si, is denoted as Pi. This consists of points
that are inside a rotated-box centered at an initial guess for
Si. Similarly, we denote normals and curvature which are a
part of Pi as N i and Ki as a short-hand notation.

IV. SEGMENT FITTING

The proposed method processes the raw point cloud data to
obtain a set of segments (i.e. a local map, M) which are then
fed into a UKF for robustness against either noise in the raw
data or erroneous segment fits. This section describes the seg-
ment fitting process formulated as a constrained optimization
on S2 × S2.

This method uses the point coordinates and their surface
normals to define cost functions to be minimized. For ro-
bustness against noisy data points which may be due to
scaffolding or other obstacles, we weight the data points as
a function of local curvature. Furthermore, the likelihood of a
data point to belong to a particular segment is determined
using the segment fit at the previous time step as well as
the neighboring segments. We apply a similar strategy for
evaluating the likelihood of the axis tangent hypotheses which
we will explain shortly.

A. Optimizer Definition

The cost function is defined as C = Ck +Ct̂ +CW where

Ck =
1∑
wi

∑
wi |ρ̄− ‖∆pi‖| (6)

Ct̂ =
1∑
wi

∑
wi

(
n̂>i t̂

)2
(7)

CW = − log
(
Wm(̂t, µ, κ)

)
(8)

with all the vectors written in the body frame and summations
running over all the points of the segment optimized. For
clarity we omit segment indices, but the reader should be
aware that C is written for a particular segment, Si, using its
corresponding point cloud Pi ⊂ P and spherical distribution,
W i
m. The terms in the above equations penalize respectively

(1) the discrepancy between each point-axis distance and the
mean value, (2) incompatibility between surface normals and
the tunnel axis, and (3) the difference between the local axis
tangent and the mode of the corresponding segment’s Watson
distribution. The mean radius ρ̄ is calculated as

ρ̄ =
1∑
wi

∑
wi‖∆pi‖ (9)

where summations run over all the points of the segment
optimized, ∆p is the shortest vector from point p to the local
axis, k + αt̂ for α ∈ R, and is given by

∆p = (I − t̂ t̂
>

)(p− k). (10)
The solution to the fitting problem can be written as

{k∗, t̂∗} = argmin
k,̂t

C. (11)

However this choice of free parameters does not impose any
constraint between segment positions hence may undesirably
cause k end up at a far point from its neighboring segments.
For this, we rewrite this parameter for the segment Si as

ki = ki
−

+ `ik̂
i

(12)

where `i = ‖ki − ki
−
‖ and k̂

i
= ki−ki−

`i is the direction
vector between consecutive segment positions with the abuse
of notation. Fig. 6 shows these two variables on a sample map.
We can rewrite the solution as

{k̂
∗
, t̂
∗} = argmin

k̂,̂t

C (13)

with ` being constant and both free parameters belonging to
S2.

In a real-life scenario, a penstock does not bend sharply.
This constraint can be easily imposed on the solver with this
choice of parameters. However the root segment, S0, is an
exception to this where the change of free parameters cannot
be applied. In that case we stick with the model in Equ. 11
and apply the constraint k0 · x̂M = 0.

The optimizer uses the Levenberg-Marquardt method with
adaptive step size to minimize C. The update is written as[

∆k̂
>
, ∆t̂

>
]>

=
(
J J> + λI

)−1
J (14)

where J = ∇C and λ > 0 is the damping parameter that
determines the step size. Each update is first projected onto
S2 at the most recent position as

k̂new = k̂ + (I − k̂ k̂
>

) ∆k̂ (15)

t̂new = t̂ + (I − t̂ t̂
>

) ∆t̂ (16)
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Fig. 5: Sample surface normal data from Center Hill Dam
experiments and the corresponding girdle distribution, i.e. κ <
0, fit with the method explained in Sec. IV. (a) Likelihoods
are color-coded with blue and black corresponding to low and
high values respectively. (b) Vertices of the mesh are used
as hypothesis. (c) Point cloud from which the distribution is
obtained.

followed by projection onto the unit sphere (not shown).
The radius is automatically estimated as in Equ. 9 once the
optimization converges. The uncertainty of the segment is
taken as the inverse of the Hessian of C. We disregard the
results of the optimization if the resultant axis tangent is
outside the 95% confidence interval of Wm.

B. Point Weights and Fitting a Watson Distribution

The two other important components of the segment fitter
are the Maximum Likelihood Estimate (MLE) of the spherical
distributions, {µi, κi}, and the calculation of weights, wj . The
MLE of a Watson distribution is obtained by using both the
point cloud data and the distributions from the previous time
step. Watson parameters corresponding for the ith segment can
be written as p(µi, κi|Pi, {W j}). While the former condition
steers MLE towards the current data, the latter helps preserving
inter-segment consistency and prevents the optimizer from
diverging. As explained in Chapter 10 of [16] concentration
of a Watson distribution is a function of its mode and data
points. Hence p(µi|Pi, {W j}) = p(µi, κi|Pi, {W j}). We use
a fixed, large number of hypotheses (i.e. points) uniformly
placed on an icosphere of unit radius as shown in Fig. 5. These
hypotheses are generated by iteratively subdividing a convex
regular icosahedra. A hypothesis, h, for a specific segment’s
potential Watson distribution mode is scored as

−
∑{

k2i +
(
h>n̂i

)2}
+
∑

γj log
(
W j
m(h)

)
(17)

where the first summation runs over all of the surface normals,
n̂i, and curvatures, ki, of the specified segment, and the second
summation runs over all of the segments. The multiplicative
factor, γj , is a decreasing function of the distance between
the segment of concern and its neighboring segments. We can
liken this strategy to the averaging operation on signals using
smoothing kernels.

The hypothesis with the highest score is chosen as the mode,
µ∗, of the corresponding distribution. The effective eigenvalue,
e, and the weight of a given point, wi are calculated as

e =

∑
wi|n̂>i µ∗|∑

wi
(18)

wi = −k2i −
(
n̂>i µ

∗
)2

+
∑

γj log
(
W j(n̂i)

)
. (19)

where the summation runs over all of the segments. Finally we
find the concentration parameter, κ∗, by plugging e into the

Fig. 6: Generation of Bernstein knots from tunnel axis tangents
illustrated on a sample three segment local map.

inverse of Equ. 10.3.32 in [16]. If −5 < κ we conclude that
the surface normal data is extremely noisy and we terminate
the process. This corresponds to either a uniform distribution
if |κ| is small, or bipolar distribution if κ > 0.

One can argue that the mode of a spherical distribution as
we proposed can be directly used as the local axis tangent
avoiding the need for an optimization procedure. However, we
think that a single distribution, such as Watson, compresses the
point cloud information into two parameters, µ and κ, which
blurs most of the details in the raw data. Hence we use the
Watson distribution as a tool for guiding the optimizer in our
procedure.

V. BERNSTEIN INTERPOLATION ON LOCAL MAP

The method explained in the previous section provides a
discrete representation of the environment. However, given that
a penstock is smooth, we can interpolate the sections between
segments using a Bernstein spline. This has several benefits
such as the total curvature of the tunnel centerline provides
a metric for the fitness of the local map, a 3D mesh of the
tunnel can be reconstructed which then may be used for path
planning etc. More importantly, two maps can be compared
using their corresponding Bernstein splines to quantify how
similar or close they are to each other.

A Bernstein spline is defined by an ordered set of knots,
oi. In our case, only the positions of segments could have
been used as the knots which would give an acceptable
approximation. However, we would like also to incorporate
the axis tangent information for a more accurate interpolation.
For this, we add two more knots to the opposite sides of each
segment (one to the end segments) which are obtained as

oi− = ki + sgn(i)
`i

2
t̂
i
(
t̂
i · k̂

i
)−1

(20)

oi+ = ki + sgn(i)
`i

+

2
t̂
i
(

t̂
i · k̂

i+
)−1

(21)

where ` and k̂ are defined in Sec. IV (Fig. 6). With these
additional knots, a local map consisting of ns segments is
approximated with a Bernstein of 3ns − 2 knots. The corre-
sponding Bernstein spline for the local map, BM, is obtained
as

BM(t) =
n−1∑
v=0

pv Bv,n(t) (22)

Bv,n(t) =

(
n
v

)
tv(1− t)n−v (23)
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where n = 3ns − 3, t ∈ [0, 1], the second equation is the
vth Bernstein basis polynomial of degree n and {pi} is the
ordered array of knots given as
{pi} =

{
· · · , o−1+ , o−1, o−1− , o0−, o

0, o0+, o
1
−, o

1, · · ·
}
. (24)

We can define a distance metric between two segments using
their positions and axis tangents as

‖Si,Sj‖ = αp‖ki − kj‖+ αo

(
1− |̂ti · t̂j |

)
(25)

where αp and αo are weights assigned to position and orien-
tation difference. With this metric we can define an operation
which gives the closest point to a segment on a spline as

B(S) =

{
B(t∗)

∣∣∣∣t∗ = argmin
t
‖B(t),S‖, t ∈ [0, 1]

}
. (26)

The reader should notice that we used a point on the spline
rather than a segment in the distance calculation. But this is a
valid operation, since a point on a spline has both a position
and a tangent which equals dB(t)/dt followed by normalization.
We will use this operation during the calculation of innovation
in the measurement update step of a UKF.

VI. FILTER DESIGN

The method explained in the previous section gives noisy
or, in the worst case, completely wrong segment fits. For this,
we use a UKF [15] to handle noise from both the IMU and
the lidar. As will be explained shortly, nonlinearities due unit
vector components of the local map prohibit the use of a linear
Kalman Filter (KF). Although Extended Kalman Filter (EKF)
offers a solution for such systems, linearization of the process
and the measurement models can get very complicated and
prohibitively time consuming. Furthermore, a UKF is capable
of capturing nonlinearities up to third order [15].

A. The State Vector

The system state vector can be written as
s> =

[
ĝ>,b>,v>,S0

>
, ...,Si

>
, ...
]

(27)

where ĝ ∈ S2 is the gravity vector direction, b ∈ R6 is
accelerometer and gyroscope biases, v ∈ R3 is the linear
velocity of the map along the local tunnel cross-section all
defined in the body frame. The size of s changes depending
on the visible range of the tunnel by addition and removal of
segments. The unconventional state vector s has the minimal
set of variables that fully represents the robot state and the
local map in this unique environment. Although the robot state
is not explicitly included in s, it can be referred from M as
explained in Sec. VI-E. Finally the system state covariance is
denoted as Σs.

B. The Process Model

The process model A predicts the evolution of the system
state with the control input, u, and the process noise, w. The
form of the process models is

sk+1 = A(sk,uk,wk) (28)

u> =
[

ua
>, uω

> ] (29)

w> =
[

wa
>, wω

>, wba
>, wbω

> ] (30)

where u is the control input comprising of acceleration and
rotational velocity data from the IMU, w ∼ N (0,Q) is
the process noise consisting of noise in acceleration, angular
velocity, acceleration bias, gyroscope bias, and Q is the
process noise covariance.

The process model A is defined as
ĝk+1 = exp(ωk ∆t)ĝk (31)
bk+1 = bk + wb,k∆t (32)
vk+1 = vk + ãk∆t (33)

kik+1 = exp(ωk ∆t)

(
kik + vk∆t+

1

2
ãk∆t2

)
(34)

t̂
i

k+1 = exp(ωk ∆t)̂t
i

k (35)
where ã = − (ua + gĝ − ba + wa), g is the gravitational
acceleration, ω = − (uω − bω + wω).

C. Measurement Model

The measurement model, H, relates a measurement, z,
to the system state, s. It also integrates the effect of the
measurement noise, m, into the expected measurement at a
specific state.

In this work, we use two measurement models Hĝ and HS
for gravity vector estimation using the IMU and to update
the whole system state using the point cloud data respectively.
Input to the latter model is an array of segment measurements,
{S̃i}, obtained using the method explained in Sec. IV.

The general form of a measurement models is
zk = H(sk,mk) (36)

where z is either ua or S̃. m ∼ N (0,Y) is the sensor noise
defined separately for each measurement model. The former
measurement model is defined as

Hĝ : ua = −gĝ + ba + mĝ (37)
where mĝ ∼ N (0,Yĝ). The latter measurement model is
defined as

HS : S̃ = BM(S̃) + mS (38)
where the left-hand-side is a segment measurement obtained
through optimization as explained in Sec. IV, and the right-
hand-size is the point-tangent-radius tuple closest to S̃ along
BM in the sense of Equ. 26. Finally, mS ∼ N (0,YS) is the
measurement noise.

D. A Constrained UKF on a Nonlinear Manifold

The unit vectors in s belong to a nonlinear manifold hence
prohibit using a linear KF. For this, we use a UKF since it
neither requires process or measurement models to be linear
nor linearization of these as in the case of EKF. Through
application of process and measurement models on the sigma
points, one can attain significantly better results compared to
alternative KF variations. We leave the details of UKF to the
seminal paper [15] and explain issues specific to our choice
of state definition.

The state covariance, denoted as Σs, is a 12 + 7ns square,
positive definite matrix where ns is the number of segments.
Sigma points are obtained as Xi = s±Wi where {Wi} are the
columns of

√
Σs obtained through Cholesky decomposition.
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The blocks of Σs corresponding to b,v,ki and ρi hold the
corresponding uncertainties which belong to Euclidean space.
However, the uncertainties of ĝ and t̂ are represented as 3D
rotation vectors [26]. In sigma point generation, mean and
covariance calculation steps, these elements have to be handled
properly. That is, we have to define summation, difference and
mean operations on these elements.

We define the summation of a unit vector, â, with a rotation
vector, b, as â ⊕ b = exp(b)â. Similarly the subtraction
operation is defined as â	b = exp(−b)â. Finally, the mean
of a set of unit vectors, {â}, is ˆ̄a which minimizes

∑
{â} â× ā

[26].
The innovation of UKF does not respect the constant dis-

tance constraints, `i, between adjacent segments. Furthermore,
since the motion along the tunnel axis is not observable,
velocity components along the tunnel axis should be always
zero, i.e. vM · x̂M = 0. We also want to keep the the position
of the root segment, k0, along the tunnel axis fixed for the
same reason. This can written as k0 · x̂M = 0.

We use the method explained Section 3 of [27] to integrate
the effect of these constraints on the segment positions at the
end of each UKF cycle.

E. Robot State

Although we do not explicitly include the robot state in the
UKF, it is indirectly estimated together with the local map.
The position of the root segment, which is also the origin
of world frame, is contained by the UKF as explained in the
previous section. Hence −k0,W gives the position of the robot
in the world frame. Furthermore, roll and pitch angles can be
inferred from ĝ and yaw from the difference between x̂B, x̂W

pair. Finally, corresponding uncertainties of these variables can
be extracted from the state covariance to obtain robot state
uncertainty.

VII. EXPERIMENTAL RESULTS

In this section, we report on the experiments that we per-
formed inside a penstock in Center Hill Dam, TN. We compare
this approach with our previous work [1] to demonstrate
how the new formulation and filtering mechanisms improve
robustness around critical regions such at the top of the
penstock. This penstock has a diameter of ∼ 5 meters and is
about 70 meters long. We could experiment only along certain
parts of the penstock due to an on-going construction on the
site. Because of this we could not collect data around the
turbine area which is the lower part of a penstock shown at
the bottom-right of Fig. 1. The data we present is from the
horizontal and inclined sections of the tunnel.

We used our custom-designed platform, which is explained
in Sec. III-B equipped with a 3D lidar and an IMU. Our
algorithms are implemented in ROS, optimized for real-time
performance and uses less than a single core. Since our
tests were conducted in confined space, we do not have
ground truth data for comparison. A tunnel reconstruction that
shows PSGC geometry also means that the state is estimated
accurately since the robot pose is a obtained through inverting
map parameters.

Fig. 7: These RViz snapshots show failure of the approach in
[1] failing while hovering close to the gate where the circular
cross-section assumption does not hold. (a) Orientation of
some segments are estimated wrong and the spacing between
segments are not uniform. (b) Since the first segment is
estimated wrong, the fitting process is early terminated.

We compare the proposed approach with our previous
work [1]. Our previous work follows a similar approach and
reconstructs the tunnel by fitting segments. However, it does
not impose any constraints between segments and also only
uses the point curvature to weight the reliability of point
cloud data. This often results in segments either far from their
neighboring segment hence does not preserve continuity. Also
when the robot flies in non-cylindrical regions, segments may
end up at angles off by 90 degrees compared to neighbor
segments. Two cases where the previous approach fails are
shown in Fig. 7. In these figures, the robot is close to the gate
where the tunnel cross-section is not cylindrical.

We compare also our results with the filtering enabled and
disabled. Fig. 8 shows two cases where the current method
solely using the optimizer with filtering and outlier elimination
are both disabled. In this case the results are almost the same
as our previous work. However as in Fig. 9, after enabling the
filtering, the current method performs successfully both when
the PSGC assumption is violated or holds. Finally we provide
a video and supplementary technical details at [28].

VIII. CONCLUSION

In this paper, we present a new method for state es-
timation and local mapping inside cylindrical geometries,
which we show to be superior to the methods proposed
in literature. The current approach models the environment
as a piecewise-smooth-generalized-cylinder . A constrained
Unscented Kalman Filter tracks the segments and the gravity
vector on a manifold using the information from an IMU and a
3D lidar. The raw point cloud data is processed by an optimizer
running on a manifold constraining relative segment poses to
preserve the consistency of the local map. We also use the
Watson distribution to analyze the raw data and do outlier
elimination on S2. We show our results on the data obtained
during experiment in Center Hill Dam, TN to support our
claims.
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Fig. 8: These RViz snapshots show failure of the current
approach while the robot is hovering at the same region as
in Fig. 7. Here, we excluded Watson distributions from the
optimizer and disabled outlier elimination to demonstrate their
effects.

Fig. 9: Two cases showing that the current method performs
successfully when the robot is hovering close to the gate
where the previous method and this method with the filtering
disabled fails. The second snapshot also show the map along
the inclined section of the tunnel.
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