This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/LRA.2019.2928734, IEEE Robotics

and Automation Letters

IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED JUNE, 2019 1

MAVNet: an Effective Semantic Segmentation
Micro-Network for MAV-based Tasks

Ty Nguyen!, Shreyas S. Shivakumar', Tan D. Miller!, James Keller!, Elijah S. Lee', Alex Zhou', Tolga Ozaslan'
Giuseppe Loianno?, Joseph H. Harwood?, Jennifer Wozencraft®, Camillo J. Taylor!, Vijay Kumar!

Abstract—Real-time semantic image segmentation on plat-
forms subject to size, weight and power (SWaP) constraints
is a key area of interest for air surveillance and inspection.
In this work, we propose MAVNet: a small, light-weight, deep
neural network for real-time semantic segmentation on micro
Aerial Vehicles (MAVs). MAVNet, inspired by ERFNet [1],
features 400 times fewer parameters and achieves comparable
performance with some reference models in empirical experi-
ments. Additionally, we provide two novel datasets that represent
challenges in semantic segmentation for real-time MAV tracking
and infrastructure inspection tasks and verify MAVNet on these
datasets. Our algorithm and datasets are made publicly available.

Index Terms—Object Detection, Segmentation and Categoriza-
tion, Semantic Scene Understanding, Aerial Systems: Perception
and Autonomy, Recognition, Semantic Segmentation

I. INTRODUCTION

UTONOMOUS MAVs capable of real-time, on-board

image semantic segmentation can provide an effective
solution for the target tracking problem in surveillance systems
and the active sensing problem in inspection systems. Thanks
to their high agility, MAVs are suitable for detecting and track-
ing moving targets, including targets that are relatively small
and/or difficult to detect using standard technologies such as
radar. Detecting and tracking these targets in real-time, on
board is useful in 1) real-time semantic mapping for inspection
and surveillance; 2) real-time detection and classification of
other MAVs for formation control; 3) real-time detection of
other MAVs for privacy and security. However, this problem

Manuscript received: February, 25, 2019; Revised June, 1, 2019; Accepted
June, 26, 2019.

This paper was recommended for publication by Editor Jonathan Roberts
upon evaluation of the Associate Editor and Reviewers’ comments. This
work was supported by the MAST Collaborative Technology Alliance -
Contract No. W911NF-08-2-0004, ARL grant W911NF-08-2-0004, ONR
grants N00014-07-1-0829, N00014-14-1-0510, ARO grant W911NF-13-1-
0350, NSF grants I11S-1426840, 1I1S-1138847, DARPA grants HR001151626,
HRO0011516850, and supported in part by the Semiconductor Research Cor-
poration (SRC) and DARPA.

T. Ozaslan acknowledges the fellowship from The Republic of Turkey
Ministry of National Education.

! The authors are with the GRASP Lab, University of Pennsylvania,
Philadelphia, PA 19104 USA. email: {tynguyen, sshreyas
, iandm, jfkeller, elslee, alexzhou, ozaslan,
cjtaylor, kumar}@seas.upenn.edu

2 The author is with the New York University, Tandon School of
Engineering, 6 MetroTech Center, 11201 Brooklyn NY, USA. email:
{loiannog}@nyu.edu.

3 The authors are with the United States Army Corps of Engi-
neers, Washington, DC 20314 USA. email: {joseph.h.harwood,
jennifer.m.wozencraft }@usace.army.mil

Digital Object Identifier (DOI): see top of this page.

Fig. 1: Left: the Falcon 250, featuring a NVIDIA Jetson TX2,
used in MAV segmentation; Right: the MAV equipped with
four on-board cameras & LEDs, has been developed to inspect
penstocks in dams for hydroelectric power.

is challenging since MAVs can appear in a wide variety of
orientations and distances against a variety of backgrounds.
Additionally, the SWaP constraints of the deployment platform
itself impose severe constraints on computational capability.

In addition, MAVs equipped with on-board sensors and
computers can be a viable and inexpensive solution for as-
sisting humans with complex, labor-intensive, high-risk tasks.
Some typical examples are the periodic inspection and mainte-
nance of critical infrastructure such as dams and penstocks [2],
or monitoring wildfire. Real-time semantic segmentation in
these cases, where communication bandwidth is often lim-
ited, enables active sensing modalities, where the robot au-
tonomously explores and investigates depending on what it
currently senses from the environment.

In the field of semantic segmentation, deep learning has
become the de-facto approach with superior accuracy and
robustness over classical machine learning approaches [3], [4].
Some prominent application areas are agricultural inspection
for fruit counting [5], disease detection [6], vehicle and
pedestrian traffic monitoring [7], [8], and structural health
monitoring of critical infrastructure [9], [10], [11]. How-
ever, most evaluation of semantic segmentation algorithms is
performed on datasets like KITTI [12] or CityScapes [13],
which are useful for self-driving cars, but are unrepresentative
of the challenging environments encountered by MAVs or
the complex environments in the aforementioned application
areas. To fill this gap, we first provide two novel datasets
1) the MAV segmentation dataset used for evaluating MAV
segmentation; 2) the penstock dataset used for evaluating
corrosion segmentation in penstocks. Images in these datasets,
captured by on-board cameras which can be either RGB or
grayscale, reflect real-world sensing constraints and are often
noisy with poor illumination.

2377-3766 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/LRA.2019.2928734, IEEE Robotics

and Automation Letters

2 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED JUNE, 2019

Despite the successes in classification and segmentation,
deep learning approaches often require significant computa-
tional power. Since the introduction of residual networks such
as ResNet [14] which add increasing numbers of layers to the
network, there has been much emphasis on accuracy over com-
pactness and efficiency of algorithms. While moving complex
processing to the cloud is a common solution for constrained
edge devices, it inhibits the MAV’s operations in remote areas
or subterranean regions where wireless connectivity is often
not available.

Examples of such applications include relative visual local-
ization of other robots in multi-robot systems [15], semantic
mapping [16], and damage detection for infrastructure inspec-
tion [17], [18]. There are some recent research in deep learning
inference at the edge [1], [19]. However, most of these works
focus on datasets collected from ground vehicles, which do
not suffer from SWaP constraints, and lack the challenges
presented with MAV imagery.

In short, our primary contributions are as follows. First, we
publicly release two challenging datasets publicly to encourage
further work in developing algorithms for real-time on-board
semantic segmentation in challenging environments. Second,
we present a novel deep learning network for achieving high
speed image segmentation at full resolution with minimal
resources and computational demands. Third, we evaluate
the network on two datasets, demonstrating the flexibility of
our approach as well as performance improvements over the
current state-of-the-art.

II. RELATED WORK
A. Real-Time Deep Learning

State-of-the-art segmentation algorithms such as ResNet
[14] and VGG [20] have achieved excellent performance on a
variety of different datasets. However, these are highly com-
plex networks, involving many layers, and require powerful
processors for inference at high speed. In [21], the authors
present ENet, which can run at up to 7 fps on a Jetson TXI,
but only with low resolution input images. ErfNet [1] builds on
ENet, achieving superior accuracy by using a more complex
but slightly slower architecture. The authors of MobileNet [22]
develop an architecture with several hyperparameters allowing
the user to tune their model for particular constraints required
by the application. ESPNet [23] uses efficient spatial pyramids
to achieve accuracy close to ResNet but at higher inference
speeds. The authors of ICNet [24] report that they significantly
outperform ENet on CityScapes while running at 30fps with
1024 x 2048 resolution, but this performance is limited to
desktop grade GPUs such as the Titan X. Furthermore, they
do not test their algorithm on embedded devices such as the
Jetson.

While these methods have achieved accurate results at
reasonably high inference rates on a large number of classes,
validation for all of these methods is typically performed on
driving datasets such as KITTI or Cityscapes.

B. Deep Learning for Visual Inspection

There has been significant interest in using deep learning
techniques for infrastructure inspection. In a recent study, [9]

introduces a sliding-window technique using a CNN-based
classifier to detect cracks on concrete and steel surfaces. The
major drawback of this method is that it cannot satisfy real-
time processing requirements and would fail in detecting small
defects which are very frequent in our images. This type of
framework is also not data-efficient since it processes an image
patch as a single sample.

In [25], the authors use CNNs to detect defects in different
types of materials such as fabric, stone and wood. They
compare their network to classical machine learning methods
such as the Gabor Filter, Random Forest and Independent
Component Analysis. However, the authors do not optimize
the inference speed of their classifier.

In a similar application to ours, [11] propose to feed a
CNN with low-level features such as edges so as to obtain
a mixture of low and high level features before classifying
pixels to detect defects on concrete tunnel surfaces. Unlike
this work, we propose an end-to-end fully convolutional neural
network that does not depend on handcrafted features and also
works with arbitrary input image sizes. In fact, some of the
low-level features used in [11] are neither easy to obtain nor
provide useful information for the CNN such as edges, texture
and frequency. This is paricularly true for the noisy, dusty,
and poorly lit images captured in our challenging datasets,
where standard edge detection will often not provide useful
information, only finding noise or dust trails.

III. DATASETS

In this study, we evaluate the performance of deep network
models on two different datasets that we collected using
autonomous MAVs.

A. MAV Segmentation Dataset

The first dataset (Fig. 2a) is a multi-robot flying dataset
collected indoors, whose primary purpose is to train real-time
vision-guided MAV tracking systems with the goal of control-
ling swarms of MAVs without explicitly communicating state
information to neighboring vehicles. Fig. 2a shows an image
sample and its corresponding labels. The images are captured
by an Open Vision Computer [26] which are integrated in our
custom Falcon 250 MAV platforms, and feature an NVIDIA
Jetson TX2 alongside gray-scale Python-1300 cameras. This
is a challenging dataset as the relative motion between the
MAVs is constantly changing, resulting in a large variance in
the size of the target objects with respect to the background
of the image.

The training dataset consists of the original images, along
with around 1000 pixel-wise labels sampled from 12 flights
of 3 MAVs within an indoor area.

For testing, we collect and label another ~ 300 images
sampled from a video captured in a different, more cluttered,
indoor location. We also slightly modify the target MAV
to detect from the ones appeared in the training dataset by
removing the sensors from the robot, thereby testing the
resilience of models to modifications to the target robot.

2377-3766 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/LRA.2019.2928734, IEEE Robotics

and Automation Letters

NGUYEN et al.: MAVNET: AN EFFECTIVE SEMANTIC SEGMENTATION MICRO-NETWORK FOR MAV-BASED TASKS 3

(b)

Fig. 2: (a) A sample image from the drone dataset. From left to right: input image, labeled image. White: drone, gray:
background (b) A sample image captured by one of the fish-eye cameras from the penstock dataset. From left to right: input
image, labeled image. Pink: corrosion, light blue: background, dark blue: rivet, green: water, gray: ignore;

B. Penstock Dataset

The second dataset provided in this study is collected
using a customized DJI-F550 MAV described in [27] that
autonomously flies inside a penstock at Center Hill Dam, TN.

There are four fish-eye cameras mounted on the MAV such
that the combined field of view covers the annulus of the
tunnel. We provide two sequences of images taken from two
flights with different lighting conditions, using one for training
and the other for testing.

We apply limited adaptive histogram equalization using
CLAHE from OpenCV 4.0 to mitigate the brightness imbal-
ance with a clip limit of 2 and the tile grid size of 8. Also,
image regions occluded by the MAV’s landing gear, camera
lens covers, and propellers are masked out.

We use four classes to label pixels: background, corrosion,
rivet, and water, as shown in Fig. 2b. Expert labellers are re-
quired to precisely label this challenging dataset. Furthermore,
each image is separately labelled by three experts. If there is
a disagreement about a label instance, the labellers discuss
and vote. If there is no conclusive agreement at this point,
the instance is labelled as ignore. We divide images between
training and test sets as follows. Images captured from the two
cameras on the left side of the MAV from the first sequence are
sampled and labeled for the training set. Images captured from
the two cameras on the right side of the MAV from the second
sequence are for testing. The rest are used for the validation
set. This way, no part of the penstock seen in training is seen
by the classifier when testing.

Unlike the MAV dataset, this dataset is relatively small
since the image sequences are quite short, due to the limited
length of the penstock where the MAV flies to collect data.
Additionally, labelling these images is 1) significantly more
complex and time consuming than in the MAV dataset; and 2)
requiring more area experts. In fact, the training set consists of
39 images, the validation set consists of 64 images and the test
set consists of 35 images. However, this dataset poses different
challenges from the MAV dataset. Moreover, evaluating the
deep network models on both datasets provide a complete
view about the effectiveness of the models on large and small
training datasets and very different classification contexts.

IV. NETWORK DESIGN

Unlike common state-of-the art deep network models bench-
marked on large datasets such as Cityscapes and MS COCO,

networks intended for robotic vision tasks run on on-board
processors and must therefore satisfy performance, computa-
tional, and memory constraints. As we will demonstrate in our
experiments and others have observed [1], it is insufficient to
merely reduce the number of parameters in a more complex
network, particularly without making significant performance
sacrifices. We therefore believe that designing a new network
structure, rather than attempting to re-scale existing ones,
is necessary. Inspired by ErfNet [1], this section details the
intuitions and experiments that lead to our proposed network
design.

A. Downsampling

Despite downsampling having undesired side-effects such
as spatial information loss and the introduction of potential
checkerboard artifacts during upsampling to the original image
size, it is still a widely utilized step for a variety of reasons.
Downsampling can help reduce spatial redundancy, making the
precedent filtering layers operate with lower resolution features
and thereby saving significant computational and memory cost.
Additionally, features obtained from filtering using the reduced
input have a larger receptive field, making them able to gather
information from over a broader context. This capability is
essential for detecting objects with significant variation in size.

A simple trick to mitigate the first side effect of downsam-
pling — spatial information loss — is to increase the number
of output features by a factor equal to the downsampling
factor. FCN [28] and UNet [29] go a step further and utilize
skip connections from early layers of the encoder to the
decoder to preserve spatial information. However, these long
skip connections require a large amount of memory to transfer
the intermediate results from the encoder to the decoder.
SegNet [30] and ENet [21] solve this problem by memorizing
the elements chosen in the maxpooling step (in the encoder)
to utilize in the downsampling process (in the decoder).

We investigate the effect of downsampling by evaluating two
variants of ERFNet: one with downsampling and one without
downsampling on our two datasets. Results show that the latter
version without downsampling does not significantly perform
better than the former version while requiring more time and
memory in inference. We also find that the downsampler block
used in [1] results in inferior performance compared to conv-
conv-pool in [31] when the number of layers and number of

2377-3766 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/LRA.2019.2928734, IEEE Robotics

and Automation Letters

4 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED JUNE, 2019

features of the network are significantly shrunk. Thus, we
make use of two conv-conv-pool blocks to downsample the
input image as the first two blocks of our network.

B. Dilated Convolution

Dilated convolution, or atrous convolution, is an effective
and inexpensive way to increase the receptive field of a
network as demonstrated in successive works such as [1],
[32]. By stacking multiple dilated convolution layers with a
dilation rate of more than one, the preceding features can
achieve an exponential increase in the receptive field given
the same number of parameters and computations that regular
convolutions use. Intuition suggests that a larger receptive
field allows the network to see not only the object but also
the context in which the object stands. This context can be
leveraged to improve segmentation performance. However,
unlike ErfNet, we find that stacking more than K dilated
convolutions with a dilation rate of 2 (where 2K is equal
to input image size) is unnecessary as the preceding dilated
convolutions have no effect. This observation informs our
removal of a significant number of dilated convolution layers
from ErfNet.

C. Depth-wise Feature Aggregation Block (DWFab)

The backbone of our MAVNet is a simple but effective
depth-wise feature aggregation block (DWFab). Fig. 3 sketches
the DWFab’s structure in comparison with the convolution
blocks (conv block) used in Mobilenet v1 [22], Mobilenet
v2 [33] and ErfNet [1]. Compared to conv blocks used in
Mobilenets, DWFab and ErfNet blocks both utilize dilated
convolutions to efficiently increase the receptive field and han-
dle object size variance in the input images. We investigate the
effect of the dilated convolutions by conducting an experiment
with MAVNet in which all dilation factors are set to 1. This
modified MAVNet does not converge when training on the
MAV dataset. On the penstock dataset, it achieves an IoU
of 31% compared to 36.24% on the original MAVNet. We
conclude that dilated convolution helps improve performance.

The main difference between our DWFab block and the
conv block used in ErfNet is that the first two conv in the
DWPFab block use depth-wise separable convolutions followed
by a 1 x 1 convolution. Theoretically, this alternative can
achieve about 2 times speedup but in practice, it can be slower
when using the separable_conv2D function in Tensorflow.

D. Network Architecture

As can be seen in Fig. 4, our network is quite simple
compared to ErfNet, UNet and ENet. The encoder part consists
of two Conv-Conv-Pool blocks, followed by four DWFab
blocks that have dilation rates of 2,4,8, 16 respectively.

The decoder consists of two upsampling blocks with a
non-bottleneck, as used in ErfNet, in between, and a 1 x 1
convolution at the end to output the logits. These umpsampling
blocks differ from the upsamplers used in ErfNet in which
deconvolution is replaced by nearest-neighbor upsampling fol-
lowed by regular convolution. This replacement helps mitigate
the checkerboard issue caused by deconvolution [34].

—

Conv 3x1, Dw 3x3,
Dilated = 1 Dilated = 1
Stride =35

lHeLU

Dw 1x1,
Dilated = 1

ReLU

Dw 3x3,
Dilated = 1

RelLU

Conv 1x3,
Dilated = 1

RelLU

Conv 3x1,
Dilated = [D,1]

RelLU Add

Conv 1x3, Mobilenet V1

Conv 1x1,
Dilated = 1

Conv 1x1,
Dilated = 1

BN + RelU

Conv 1x1,
Dilated = 1

G%)
Mobilenet V2
Stride = 1 block

RelLU

Conv 3x1,
Dilated = [D,1]

Conv 1x3,
Dilated = [1,0]

Concatenate

Conv 1x1,
Dilated = 1

block

EriNet block

DWFab block

Fig. 3: Diagrams of different Conv blocks. The ErfNet Conv
block and DWFab block utilize dilated convolution with factor
D>1.

Depth-wise
Conv- Conv- Feature
Conv- % Conv- —> Aggreration —
Pool Pool Blocks (dilation
2,4,8,8, 18)

Nearest
|, Neighbor Conv
- 1x1

,::a;iﬂr Non-bottieneck
Ohber . Block
Convix1 (dilation 1) Convix1

1024 x 1280 512 x B4Dx 256 x 320 x 256 x 320 x 512 x 840 x 512 x 640 x 1024 x 1280 1024 x 1280
x3 4 8 8 4 4 x4 xN

Fig. 4: Network Architecture. Input used in this study is of
size 1024 x 1280 x 3 and the output segmentation is 1024 x
1280 x N, with N is the number of classes.

Such short decoder is used since it can significantly reduce
computation as well as eliminate the need for long skip
connections, thanks to the shallow network. We empirically
found that a long decoder without a long skip connection is
harder to train, resulting in inferior performance.

To demonstrate the effectiveness of the DWFab block, in
the following sections, we carry out experiments to compare
MAVNet with UNet, ENet, and ErfNet. In addition, we create
a variant of ErfNet with the same number of blocks as that
of MAVNet. This network is referred to as S-ErfNet for the
remainder of this paper.

V. TRAINING
A. Focal Loss for Multi-class Classification

Class imbalance is a common problem which often appears
when performing multi-class segmentation. In robotics and
medical imaging applications, class imbalance is exacerbated
by small training sets, due to the difficulty and cost involved
in gathering data as well as the need for expert labellers.

To mitigate this problem, we make use of the focal loss,
introduced in [35]. We can generalize focal loss for the multi-
class classification problem as follows:

1 N C . R
Lrocal = _N Z Z(l _ync)y}’nclog)’nw (D

=lc=1
where y > 0 is a tunable rf)arzimeter. The effect of the focal loss

and 7 value can be understood in the following manner: When
a difficult sample is misclassified, with the true class given low
confidence (¥, is small), the weighting factor becomes close
to 1, preserving that sample’s contributions to the total loss.

2377-3766 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/LRA.2019.2928734, IEEE Robotics

and Automation Letters

NGUYEN et al.: MAVNET: AN EFFECTIVE SEMANTIC SEGMENTATION MICRO-NETWORK FOR MAV-BASED TASKS 5

In contrast, an easy sample correctly classified with a high
confidence value (¥, is large), will have its weight close to
0, reducing its contribution to the total loss. In summary, the
focal loss function can appreciate the weighting of difficult
samples, regardless of which class they belong to, by giving
more them more weight and depreciating easy samples. In
our experiments, we set ¥ =2 as recommended by the authors
of [35]. Since the MAV dataset presents a huge imbalance
between positive samples (MAV pixels) and negative samples
(background pixels), we introduce additional weights for each
sample. Eq. 1 becomes

N C
LF()cal = Z Z

where w, is the correspondmg weight for class ¢. Empirically,
we set wmay = 20, and Wpackground = 1.

We investigate the effectiveness of focal loss by comparing
the performance of MAVNet trained using focal loss with
that of MAVNet trained using cross-entropy loss. Results are
shown in Sec. VI. For simplicity, from now on, we refer to
the MAVNet model trained using focal loss whenever a loss
function is not explicitly mentioned.

— Yne) ync logPne,)

B. Training Scheme

All the deep network models investigated in this study are
implemented in Tensorflow [36]. The training procedure is
the same with all models: use mini-batch gradient descent
with a batch-size of 4 and the Adam optimizer [37] with
Bi =0.9, B, =0.999, £ = 1073, and learning rate = 0.001.
All models are trained until convergence, and the loss fuc-
tion ceases to decrease. Online data augmentation is used
including random rotation, random cropping and padding, ran-
dom gamma shifting, random brightness shifting, and random
color shifting. Our implementation is publicly available at
https://github.com/tynguyen/M AV Net.

VI. BENCHMARKS

We benchmark our proposed network in comparison with
networks including UNet, ErfNet, ENet and S-ErfNet on both
the MAV and penstock datasets. The performance is evaluated
using different metrics as follows.

A. Metrics

For each model, we report three metrics commonly used
in semantic segmentation: Intersection over union (IoU), false
negative (FN) rate, and false positive (FP) rate.

TP
IoU= ——————, 3
TP+FP+FN
FN
False Negative Rate = —— 4
alse Negative Rate = -, 4
. FP
False Positive Rate = ————, (@)

where TP = Pixels correctly classiged Ta]sv the object by the
classifier; F'P = Pixels not classified as the object in the ground
truth, but classified as the object by algorithm; TN = Pixels not
classified as the object in ground truth and by algorithm; FN =
Pixels classified as object in ground truth, but not classified as

MAV
ToU FN Rate FP Rate Centroid Distance
UNet 63.50 14.27 0.14 41.40+602.7
ErfNet 55.30 1.97 0.31 4.61+1.81
ENet 67.62 5.8 0.16 346+2.71
S-ErfNet 42.42 8.20 0.48 4.55+3.54
MAVNet-Focal 44.30 3.34 0.48 3.36+1.85
MAVNet-CE 46.00 10.00 0.39 3.71+4.11

TABLE I: Performance on MAV dataset. MAVNet is trained
using focal loss (-Focal) and cross-entropy loss (-CE)

object by algorithm. It is desirable to obtain a segmentation
model with a high IoU and low FP and FN rates. However,
it is often often infeasible to design such model in practice.
Instead, there is often a trade-off between these metrics when
selecting a model.

In addition, we introduce the centroid distance metric for
the MAV dataset which is calculated as the L2 norm of the
difference between the centroid of the MAV detected and that
of the MAV in the ground truth, in pixels. For the tracking
application, where the objective is simply to localize the target,
this is the most relevant performance metric.

B. MAV Segmentation Dataset

Table I details the four metrics for the MAV object class
on the MAV segmentation dataset. As the table demonstrates,
ENet has the best IoU values, ErfNet has the best FN rate,
UNet has the best FP rate, and MAVNet has the lowest
centroid distance error. MAVNet, while having an IoU lag-
ging behind ENet, UNet, and ErfNet, has the second best
value in FN, and the best centroid distance metric. Indeed,
it has FN rate of 3.34% compared to 1.97% of the best
and centroid distance error of 3.36 compared to 3.46 of the
second best. Nevertheless, the superior centroid distance error
gives MAVNet higher preference in practice where a real-time
filtering algorithm is often used to solve the tracking problem.
It is also worth noticing that that focal loss yields higher false
positive rate than cross-entropy loss does while having better
false negative rate.

C. Penstock Dataset

Tab. II details the three metrics for each class on the
penstock dataset.

As can be seen, the performance of each model varies with
respect to each different class of objects. For example, UNet
performs well on corrosion, but poorly on rivets. MAVNet
while having an IoU of 57.66% compared to the 61.67%
of Unet for corrostion, has better IoU for other classes. In
addition, MAVNet has the lowest FN rate on corrosion and
rivet segmentation. Overall, MAVNet has the highest average
IoU over all classes.

VII. PERFORMANCE ANALYSIS
A. Speed and Performance Tradeoff

In this section, we report the performance of models with
respect to inference speed and their model’s complexity.
Details are given in Tab. III, where performance in IoU is

2377-3766 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/LRA.2019.2928734, IEEE Robotics
and Automation Letters

6 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED JUNE, 2019
Corrosion Rivet Water
ToU FN Rate FP Rate [[ToU FN Rate FP Rate [[ToU FN Rate FP Rate [[Mean IoU
UNet 61.67 26.04 5.68 0.00 100.00 0.00 1.83 98.12 0.03 21.18
ErfNet 35.84 56.73 6.98 31.68 64.70 0.6 5.90 92.70 0.23 24.47
ENet 45.12 43.00 7.86 34.07 62.55 0.52 0.00 100.00 0.00 26.40
S-ErfNet 50.49 28.24 12.33 42.73 53.72 0.42 2.90 96.57 0.26 32.04
MAVNet-Focal 57.66 22.30 10.06 48.03 41.43 1.14 3.05 93.46 0.95 36.24
MAVNet-CE 52.20 17.21 17.18 42.41 44.61 1.45 6.10 90.16 0.68 33.56

TABLE II: Class-wise performance on penstock dataset. All metrics are in (%), best values are in bold.

the average IoU over all classes on each dataset except the
background.

To measure the speed, we run the pretrained models and
report the inference speed of models on three platforms 1) the
NVIDIA Jetson Xavier, 2) the Falcon 250 that equipped with a
NVIDIA Jetson TX2, and 3) the NVIDIA Jetson Nano. Speed
is measured for input images of size 1024 x 1280 x 3 with a
batch size of 1.

Fig. 6 and 5 visualize the corresponding inference speed
and performance of each model in each dataset running on our
Falcon 250. Note that all models are trained from scratch for
each dataset using the same training scheme, and the trained
models are not optimized using optimization techniques and
tools such as TensorRT. These two figures show the effective-
ness of our network design.

As can be seen in both figures, MAVNet has a speed
of 4.4 fps compared to the fastest one, S-ErfNet which

Speed vs. Performance on Penstock
40

30

20

Mean loU

1 2 3 4 5 6

Frames Per Second

UNet = Erfnet 4 ENet « S-ErfNet MAVNet

Fig. 6: Speed v.s. mean IoU over 3 object classes on penstock
dataset. MAVNet outperforms other methods while running
40% slower than the fastest, S-ErfNet. Running time is mea-
sured on Falcon 250.

tops 6.2 fps while having better performance. MAVNet even Items || UNet | ErfNet | ENet | S-ErfNet | MAVNet
outperforms the original ErfNet and other methods which IoU 1 (%) 63.50 | 55.30 [67.62 42.42 4430
run 4 — 6 times slower on the penstock dataset. Tab. III %\(I)U 2((10%)) 2()12168 26*2‘17 206';)0 332;?34 3261234
, s . . . ano (fps
demonstrates MAVNeF s flexibility, yielding consmtlent results Falcon (fps) 055 097 17 621 4.40
for both datasets and its compactness. MAVNet, with around Xavier (fps) 1.3 2.1 2.9 13.6 8.9
4300 parameters, has roughly 1800 times fewer parameters Params (mils) || 7.76 | 2.06 | 0.37 | 0.0039 | 0.0043
than UNet and 400 ti £ t than ExfNet. Th Avg Speedup 1x 1.7x 2.1x 11.6x 7.7%
an cltan 1mes fewer parameters than ErtNet. ese Param savings 1x 3.7x 21x 1990 % 1772 %

advantages make it perfectly suitable for embedded systems
and MAV tasks.

Speed vs. Performance on MAV
70

60
50
40

30

Mean loU

20

1 2 3 4 5 6

Frames Per Second

UNet = Erfnet 4 ENet ¢ S-ErfNet MAVNet

Fig. 5: Speed v.s. mean IoU over MAV object class on MAV
dataset. MAVNet performance in IoU is inferior to UNet, ENet
but runs much faster. Running time is measured on Falcon 250.

B. Discussion

Tab. I and II show that ErfNet, S-ErfNet and MAVNet
tend to have higher FP rates while having lower FN rates
compared to ENet and UNet. Since the high FP rate happens

TABLE III: Performance v.s. complexity comparison. Infer-
ence time is measured in fps, in Jetson Nano, Falcon 250 and
Jetson Xavier platforms. The input image is 3 x 1024 x 1280.
IoU 1 and IoU 2 are the average of IoU of classes on the
MAV dataset and penstock dataset respectively.

with MAVNet in two cases - using focal loss and cross-entropy
loss - it is suggested that this phenomenon comes from the
network structure of these models where a stack of dilated
convolution is used to give high receptive field in the last
layers, and there is a lack of long skip connections as in UNet.

Examples of success case and failure case of MAVNet on
the MAVNet can be seen in Fig. 7 and Fig. 8, respectively.
Fig. 9 illustrates a success case of MAV on the penstock
dataset. In all examples, it can be seen that MAVNet yields
a high number of FP pixels. UNet fails to detect the MAV in
one case; ENet performs well on both MAV detection cases;
ErfNet and S-ErfNet yield high numbers of FP pixels. These
qualitative results are consistent with the quantitative results
in Tab. I and Tab. IL.

The performance difference of MAVNet regarding IoU on
two datasets can be explained by the difference in TP/TN
between the two datasets. In the penstock dataset, total
TP/TN ~ 4:6 while in the MAV dataset, TP/TN ~ 1:200.

2377-3766 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/LRA.2019.2928734, IEEE Robotics
and Automation Letters

NGUYEN et al.: MAVNET: AN EFFECTIVE SEMANTIC SEGMENTATION MICRO-NETWORK FOR MAV-BASED TASKS 7

Ground truth MAVNet | loU=0.732 ErfNet | 10U=0.653

-
4

> > k o)
UNet | loU=0.144 ENet | 10U=0.698 S—ErfNet | loU=0.692
-
4
) . - >

Fig. 7: Success case in MAVNet dataset. UNet fails to detect the MAV. Colors: black - MAV, white - background

Ground truth MAVNet | loU=0.366 ErfNet | loU=0.440

E 2 -
= -» - »
UNet | 1oU=0.665 ENet | loU=0.724 S—ErfNet | loU=0.330
»
‘e
» » »

Fig. 8: Failure case. MAVNet, ErfNet and S-ErfNet have high FP rate. Colors: black - MAV, white - background

Ground

Fig. 9: Success case of MAVNet on the penstock dataset. Colors: pink - corrosion, blue - rivet, green - water.

VIII. CONCLUSIONS while performing poorly on the other datasets with other

metrics. Our work demonstrates a potential for further work on

In this work, we develop a fast and lightweight semantic designing modestly-sized networks with a manageable number
segmentation model to satisfy SWaP constraints. We provide of parameters to perform MAV tasks under SWaP constraints.
two datasets representing specific real-world tasks for au-
tonomous MAVs. Compared to other models, MAVNet has
a good tradeoff between inference time and performance on
both datasets. Expeﬂments show that a model can perform [1] E.Romera, J. M. Ivarez, L. M. Bergasa, and R. Arroyo, “Erfnet: Efficient
well on a dataset, with respect to one evaluation metric residual factorized convnet for real-time semantic segmentation,” IEEE

REFERENCES

2377-3766 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/LRA.2019.2928734, IEEE Robotics

[2

—

[6]

[7]

[8]

[9]

(10]

(1]

(12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

2377-3766 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

and Automation Letters

IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED JUNE, 2019

Transactions on Intelligent Transportation Systems, vol. 19, no. 1, pp.
263-272, Jan 2018.

T. Ozaslan, G. Loianno, J. Keller, C. J. Taylor, and V. Kumar, “Spatio-
temporally smooth local mapping and state estimation inside generalized
cylinders with micro aerial vehicles,” IEEE Robotics and Automation
Letters, vol. 3, no. 4, pp. 4209-4216, Oct 2018.

Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” nature, vol. 521,
no. 7553, p. 436, 2015.

L. Deng, D. Yu, et al., “Deep learning: Methods and applications,”
Foundations and Trends®) in Signal Processing, vol. 7, no. 3-4, pp.
197-387, 2014.

I. Sa, Z. Ge, F. Dayoub, B. Upcroft, T. Perez, and C. McCool,
“Deepfruits: A fruit detection system using deep neural networks,”
Sensors, vol. 16, no. 8, p. 1222, 2016.

S. P. Mohanty, D. P. Hughes, and M. Salathé, “Using deep learning for
image-based plant disease detection,” Frontiers in plant science, vol. 7,
p. 1419, 2016.

P. Sermanet, K. Kavukcuoglu, S. Chintala, and Y. LeCun, “Pedestrian de-
tection with unsupervised multi-stage feature learning,” in Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition,
2013, pp. 3626-3633.

Y. Lv, Y. Duan, W. Kang, Z. Li, F-Y. Wang, er al., “Traffic flow
prediction with big data: A deep learning approach.” IEEE Trans.
Intelligent Transportation Systems, vol. 16, no. 2, pp. 865-873, 2015.
Y.-J. Cha, W. Choi, and O. Biiyiikoztiirk, “Deep learning-based crack
damage detection using convolutional neural networks,” Computer-Aided
Civil and Infrastructure Engineering, vol. 32, no. 5, pp. 361-378, 2017.
C. M. Yeum and S. J. Dyke, “Vision-based automated crack detection
for bridge inspection,” Computer-Aided Civil and Infrastructure Engi-
neering, vol. 30, no. 10, pp. 759-770, 2015.

K. Makantasis, E. Protopapadakis, A. Doulamis, N. Doulamis, and
C. Loupos, “Deep convolutional neural networks for efficient vision
based tunnel inspection,” in Intelligent Computer Communication and
Processing (ICCP), 2015 IEEE International Conference on. IEEE,
2015, pp. 335-342.

A. Geiger, P. Lenz, and R. Urtasun, “Are we ready for autonomous
driving? the kitti vision benchmark suite,” in Conference on Computer
Vision and Pattern Recognition (CVPR), 2012.

M. Cordts, M. Omran, S. Ramos, T. Rehfeld, M. Enzweiler,
R. Benenson, U. Franke, S. Roth, and B. Schiele, “The cityscapes
dataset for semantic urban scene understanding,” 2016 IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), Jun 2016.
[Online]. Available: http://dx.doi.org/10.1109/CVPR.2016.350

K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning
for image recognition,” 2016 IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), Jun 2016. [Online]. Available:
http://dx.doi.org/10.1109/CVPR.2016.90

M. Saska, “Mav-swarms: Unmanned aerial vehicles stabilized along a
given path using onboard relative localization,” in 2015 International
Conference on Unmanned Aircraft Systems (ICUAS), June 2015, pp.
894-903.

D. Maturana, S. Arora, and S. Scherer, “Looking forward: A semantic
mapping system for scouting with micro-aerial vehicles,” in 2017
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), Sep. 2017, pp. 6691-6698.

J. Rau, K. Hsiao, J. Jhan, S. Wang, W. Fang, and J. Wang, “Bridge crack
detection using multi-rotary uav and object-base image analysis,” The
International Archives of Photogrammetry, Remote Sensing and Spatial
Information Sciences, vol. 42, p. 311, 2017.

T. Ozaslan, G. Loianno, J. Keller, C. J. Taylor, V. Kumar, J. M.
Wozencraft, and T. Hood, “Autonomous navigation and mapping for
inspection of penstocks and tunnels with mavs,” IEEE Robotics and
Automation Letters, vol. 2, no. 3, pp. 1740-1747, July 2017.

J. Hochstetler, R. Padidela, Q. Chen, Q. Yang, and S. Fu, “Embedded
deep learning for vehicular edge computing,” in 2018 IEEE/ACM
Symposium on Edge Computing (SEC), Oct 2018, pp. 341-343.

K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” 2014.

A. Paszke, A. Chaurasia, S. Kim, and E. Culurciello, “Enet: A deep
neural network architecture for real-time semantic segmentation,” arXiv
preprint arXiv:1606.02147, 2016.

A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand,
M. Andreetto, and H. Adam, “Mobilenets: Efficient convolutional neural
networks for mobile vision applications,” 2017.

A. C. L. S. Sachin Mehta, Mohammad Rastegari and H. Hajishirzi,
“Espnet: Efficient spatial pyramid of dilated convolutions for semantic
segmentation,” in ECCV, 2018.

[24]

[25]

[26]

[27]

(28]

[29]

[30]

(31]

[32]

(33]

[34]

[35]

[36]

[37]

H. Zhao, X. Qi, X. Shen, J. Shi, and J. Jia, “Icnet for real-
time semantic segmentation on high-resolution images,” Lecture
Notes in Computer Science, p. 418434, 2018. [Online]. Available:
http://dx.doi.org/10.1007/978-3-030-01219-9_25

J.-K. Park, B.-K. Kwon, J.-H. Park, and D.-J. Kang, “Machine learning-
based imaging system for surface defect inspection,” International
Journal of Precision Engineering and Manufacturing-Green Technology,
vol. 3, no. 3, pp. 303-310, 2016.

M. Quigley, K. Mohta, S. S. Shivakumar, M. Watterson, Y. Mulgaonkar,
M. Arguedas, K. Sun, S. Liu, B. Pfrommer, V. Kumar, ef al., “The open
vision computer: An integrated sensing and compute system for mobile
robots,” arXiv preprint arXiv:1809.07674, 2018.

T. Ozaslan, G. Loianno, J. Keller, C. J. Taylor, V. Kumar, J. M.
Wozencraft, and T. Hood, “Autonomous navigation and mapping for
inspection of penstocks and tunnels with mavs,” IEEE Robotics and
Automation Letters, vol. 2, no. 3, pp. 1740-1747, 2017.

J. Long, E. Shelhamer, and T. Darrell, “Fully convolutional networks
for semantic segmentation,” in Proceedings of the IEEE conference on
computer vision and pattern recognition, 2015, pp. 3431-3440.

O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional networks
for biomedical image segmentation,” in International Conference on
Medical image computing and computer-assisted intervention. Springer,
2015, pp. 234-241.

V. Badrinarayanan, A. Kendall, and R. Cipolla, “Segnet: A deep con-
volutional encoder-decoder architecture for image segmentation,” /EEE
transactions on pattern analysis and machine intelligence, vol. 39,
no. 12, pp. 2481-2495, 2017.

K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” CoRR, vol. abs/1409.1556, 2014.

L.-C. Chen, Y. Zhu, G. Papandreou, F. Schroff, and H. Adam, “Encoder-
decoder with atrous separable convolution for semantic image segmen-
tation,” in Proceedings of the European Conference on Computer Vision
(ECCV), 2018, pp. 801-818.

M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen,
“Mobilenetv2: Inverted residuals and linear bottlenecks,” in Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition,
2018, pp. 4510-4520.

A. Odena, V. Dumoulin, and C. Olah, “Deconvolution and checkerboard
artifacts,” Distill, vol. 1, no. 10, p. €3, 2016.

T.-Y. Lin, P. Goyal, R. Girshick, K. He, and P. Dollar, “Focal loss
for dense object detection,” IEEE transactions on pattern analysis and
machine intelligence, 2018.

M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin,
S. Ghemawat, G. Irving, M. Isard, et al., “Tensorflow: a system for
large-scale machine learning.” in OSDI, vol. 16, 2016, pp. 265-283.
D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
in International Conference on Learning Representations (ICLR), 2015.

