
ESTIMATION, MAPPING AND NAVIGATION WITH MICRO AERIAL VEHICLES

FOR INFRASTRUCTURE INSPECTION

Tolga Özaslan

A DISSERTATION

in

Mechanical Engineering and Applied Mechanics

Presented to the Faculties of the University of Pennsylvania

in

Partial Fulfillment of the Requirements for the

Degree of Doctor of Philosophy

2020

Vijay Kumar, Supervisor of Dissertation
Nemirovsky Family Dean of Penn Engineering and
Professor of Mechanical Engineering and Applied Mechanics

Camilo J. Taylor, Co-Supervisor of Dissertation
Professor of Computer and Information Science

Jennifer R. Lukes, Graduate Group Chairperson
Professor of Mechanical Engineering and Applied Mechanics

Dissertation Committee

Vijay Kumar, Professor of Mechanical Engineering and Applied Mechanics

Camilo J. Taylor, Professor of Computer and Information Science

Kostas Daniilidis, Professor of Computer and Information Science

Mark Yim, Professor of Mechanical Engineering and Applied Mechanics

Nicholas Roy, R.L. Bisplinghoff Professor of Aeronautics and Astronautics

ESTIMATION, MAPPING AND NAVIGATION WITH MICRO AERIAL VEHICLES

FOR INFRASTRUCTURE INSPECTION

© COPYRIGHT

2020

Tolga Özaslan

Dedicated to my beloved wife Elif

iii

Acknowledgments

Two sentences from Nursi’s masterpiece The Words summarize my journey: “Yes, one who

acquires true belief may challenge the whole universe and be saved from the pressure of

events in accordance with the strength of his belief” and, “Belief (iman) makes man into

man, indeed, it makes him into a sultan”. His Words shed light on my path throughout this

long journey and saved me from being exhausted many times. Hence my greatest thanks go

to my mentor Said Nursi.

This thesis would not have been possible without the encouragement and support of

many people. Foremost, I would like to express my sincere gratitude and thanks to my

advisers, Dr. Vijay Kumar, and Dr. CJ Taylor, for their endless support, patience, and

guidance throughout my graduate studies. I feel very fortunate and privileged for being a

student of such great mentors and roboticists.

I also owe my special thanks to my thesis committee members Dr. Kostas Daniilidis, Dr.

Mark Yim and Dr. Nicholas Roy for their invaluable feedback and light-shedding guidance

during the preparation of my thesis.

I would also like to thank my fellow lab members, for fields trips and experiments as

well as many intellectual and scientific discussions over the years: James Keller, Giuseppe

Loianno, Kartik Mohta, Omur Arslan, Shaojie Shen. Especially, I am very much indebted

to James Keller and Giuseppe Loianno for their great help during the ardous, tiring, dirty

and dusty flight tests inside penstocks.

I also acknowledge the scholarship by Republic of Turkey Ministry of National Education

(MEB) during my graduate studies at University of Pennsylvania.

I would like to thank all of my friends, especially the Upper Darby crew, Abdurrahman

iv

Yilmaz, Hayrettin Unsal, Mikail Temirel, Musa Dankaz, Sadik Seymen. And Mustafa Dogan,

Haris Toprak, Celal Alagoz, Birkan Tunc made Philly feel like home for me. I can never

forget their loyalty, cordiality and providing priceless moral support at all my hard times.

My special thanks to my family... No words is capable of expressing how grateful I am

to my mother, father, sister, mother-in-law and father-in-law for all the sacrifices that you

have made on my behalf. Your patient prayers and never-ending encouragement for me were

what sustained me thus far.

The best outcome of my years in the US is finding my best friend, soul-mate and other-

half. I would like to thank my loving and patient wife who never ceased her faithful support

during my exhausting and grueling journey; especially in the moments when everyone else

was unable to answer my queries.

v

ABSTRACT

ESTIMATION, MAPPING AND NAVIGATION WITH MICRO AERIAL VEHICLES

FOR INFRASTRUCTURE INSPECTION

Tolga Özaslan

Vijay Kumar

Camilo J. Taylor

Multi-rotor Micro Aerial Vehicles (MAV) have become popular robotic platforms in the

last decade due to their manufacturability, agility and diverse payload options. Amongst

the most promising applications areas of MAVs are inspection, air delivery, surveillance,

search and rescue, real estate, entertainment and photography to name a few. While GPS

offers an easy solution for outdoor autonomy, using onboard sensors is the only solution

for autonomy in constrained indoor environments. In this work, we study onboard state

estimation, mapping and navigation of a small MAV equipped with a minimal set of sensors

inside GPS-denied, axisymmetric, tunnel-like environments such as penstocks. We primarily

focus on state estimators formulated for different sensor suits which include 2D/3D lidars,

cameras, and Inertial Measurement Units (IMU). Penstocks are pitch dark environments

and offer very weak visual texture even with onboard illumination, hence our estimators

primarily rely on lidars and IMU. The point cloud data returned by the lidar consists of

either elliptical contours or indiscriminate partial cylindrical patches making localization

along the tunnel axis theoretically impossible. Cameras track features on the walls using

the onboard illumination to estimate the velocity along the tunnel axis unobservable to

range sensors. Information from all sensors are then fused in a central Kalman Filter for 6

Degrees-of-Freedom (DOF) state estimation. These approaches are validated through onsite

experiments conducted in four different dams demonstrating state estimation, environment

mapping, autonomous and shared control.

vi

Contents

Acknowledgments . iv

Abstract . vi

List of Figures . viii

1 Introduction . 1
1.1 Motivation . 3
1.2 Problem Statement . 4
1.3 Research Problems . 5

1.3.1 Range-Based SLAM . 5
1.3.2 Sensor Fusion . 6
1.3.3 Tunnel Mapping . 6

2 Related Work . 8
2.1 Inspection Robotics . 8
2.2 Simultaneous Localization and Mapping . 10
2.3 Range-Based Methods . 13
2.4 Vision-Based Methods . 15

3 Preliminaries . 17
3.1 Experimentation Environment . 17
3.2 Experiment Platforms . 22

3.2.1 Platform Requirements . 22
3.2.2 Pelican . 24
3.2.3 KHex . 24
3.2.4 DJI Hexrotor . 26

4 Localization and Control Using a Single 2D Lidar 28
4.1 Map and Frame Definitions . 29

4.1.1 Map as a List of Joints . 29
4.1.2 Reference Frame Definitions . 30

4.2 Filtering-Based Localization . 31
4.2.1 Robot State . 33
4.2.2 Rao-Blackwellized Particle Filter . 37
4.2.3 Process Model . 38
4.2.4 Measurement Model . 39

4.3 2D Laser Processing . 40
4.3.1 Yaw Estimation . 41

vii

4.3.2 An ICP Algorithm for Position Estimation 44
4.4 Particle Weighing and Resampling . 48

4.4.1 Particle Weighing . 48
4.4.2 Particle Resampling . 49

4.5 Experimental Results . 51

5 State Estimation Using a Heterogeneous Sensor Suit 56
5.1 A Discussion on The Requirement of a Prior Map 57
5.2 Nomenclature and Definitions . 58
5.3 Sensor Fusion for State Estimation . 59

5.3.1 Robot State . 60
5.3.2 Process Model . 61
5.3.3 Fusing Multiple Sensory Information 61

5.4 Range-Based Partial State Estimation . 63
5.4.1 Iterative Least-Squares Formulation 63
5.4.2 Uncertainty Estimation . 66

5.5 Vision-Based Axial Speed Estimation . 69
5.5.1 Full State vs Axial Speed Estimation 70
5.5.2 Image Enhancement . 71
5.5.3 Feature Extraction and Tracking . 72

5.6 Visual Odometry . 76
5.7 Panoramic Image Generation . 80
5.8 Experimental Results . 81

6 Local Mapping and Estimation with a 3D Lidar 89
6.1 Local Map Representation and Robot State 90
6.2 System Design . 92
6.3 3D Point Cloud Preprocessing . 92

6.3.1 Surface Normal and Uncertainty Estimation 94
6.4 Point Cloud Segmentation and Surface Fitting 98

6.4.1 Local Frame Initialization . 99
6.4.2 Segment Initialization . 100
6.4.3 Segment Refinement . 102

6.5 Uncertainty Estimation of Local Frames . 108
6.6 Robot State and Its Uncertainty . 109
6.7 A Discussion on Estimator Robustness . 112
6.8 Obstacle Avoidance and Shared Control . 114
6.9 Experimental Results . 115

7 Modeling Tunnels as Smooth Generalized Cylinders 120
7.1 Point Cloud Processing . 122
7.2 Local Map as a Generalized Cylinder . 123

7.2.1 Map Knots . 123
7.2.2 Bézier Interpolation . 124

7.3 Distributions on Sd−1 . 128
7.3.1 Literature Review on Spherical Distributions 129
7.3.2 Watson Distribution Formulation . 131
7.3.3 Watson Distribution Fitting . 132

viii

7.4 Knot Estimation . 136
7.4.1 Optimizer Definition . 137

7.5 Filter Design . 141
7.5.1 State Vector . 142
7.5.2 Process Model . 143
7.5.3 Measurement Model . 144
7.5.4 A Constrained UKF on a Nonlinear Manifold 148
7.5.5 Robot State . 150

7.6 Experimental Results . 150

8 A Benchmark Comparison of Estimators . 162
8.1 Dataset Collection . 163
8.2 Map Reconstruction and Localization using AprilTags 166

8.2.1 Map Quality . 170
8.3 Coordinate Frame Transformations . 174
8.4 Comparison of Pose Estimates . 177

9 Conclusion . 182
9.1 Key Contributions . 182
9.2 Limitations . 183
9.3 Future Work . 184

ix

List of Figures

3.1 An array of steel penstocks. 17
3.2 A partial CAD model of a penstock in Glen Canyon Dam, AZ. This penstock

is one of the largest in the US with a total length of more than 250 meters
and a steep inclination of ∼ 60 degrees. 18

3.3 A turbine in Glen Canyon Dam, AZ exhibited for visitors. Its size can be
compared with a visitor standing next to it. 19

3.4 An image from inside a penstock in Allatoona Dam, GA. This image was taken
from a quadcopter flown manually close to a patch that needs maintenance. . 19

3.5 (Left) Custom-designed hex-rotor platform hovering ∼ 4 meters from the gate
in shared-control mode. (Top-right) FPV camera snapshot showing the gate
and the water gush. (Bottom-right) CAD model of a penstock at Center Hill
Dam, TN. 20

3.6 A photo taken from inside a penstock at Glen Canyon Dam, AZ while the
KHex platform is flying autonomously. The robot is tested for visual odom-
etry with onboard LEDs as the only source of illumination. 21

3.7 A snapshot from RViz captured when the robot is flying along the inclined
section of a penstock at Center Hill Dam, TN. The shape of the point cloud
data is almost the same throughout the inclined section hence providing no
information about robot’s position along the tunnel axis. 21

3.8 Our Pelican platform from different perspectives. 24
3.9 KHex platform and onboard illumination setup. 25
3.10 KHex platform and drawings showing the sensor placement from different

perspectives. 26
3.11 Two iterations of the DJI platform during experimentation inside Center Hill

Dam, TN. 27

4.1 A sample tunnel reconstruction from a set of ordered joints. Each joint has
a associated 3D position and a radius. The junctions at the terminals are
marked as blocked to simulate gates or other blockages. The map is repre-
sented as a point cloud. 30

4.2 An illustration of the three coordinate frames which are the body (B), local
map (A) and gravity (G) frames. These figures show the relation between
these frames with the robot state is fixed. The difference between the local
map and the gravity frames is a rotation around the common y axis. 31

4.3 Three illustrations explaining the three limiting cases where a range-based
estimator cannot localize a robot inside a axisymmetric tunnel. 32

x

4.4 This figure illustrates the local and gravity frames along with the robot po-
sition written in these frames. Note that the origin of a frame is the point
closest to the robot along the center line. xx = 0 always holds in the local
frame case due to how the frame origin is chosen. This equality holds for a
gravity frame only if the center line is horizontal. 35

4.5 This figure shows the position of a robot at two different sections of the tunnel.
In between these two states the robot is commanded to follow a trajectory
with xz being constant. When the inclination changes, in order to keep xz
constant (orange lines), the distance of the robot from the centerline adjusts
accordingly. This is not a desired effect since in a typical inspection scenario,
the robot is commanded to follow a path at a constant distance from either
the centerline or the tunnel walls. 36

4.6 This figure illustrates a hovering robot in two different sections of a tunnel.
The robot orientations as written in their corresponding local map frames
differ since the inclinations are different. Hence, the robot orientation is
represented in a gravity frame. 36

4.7 The estimator based on a Rao-Blackwellized Particle Filter and a PD con-
troller for autonomous flight in a tunnel of known cross section. A PF with
N particles is used to model the propagation of the axial position and its
uncertainty, while a UKF is used to estimate the remaining states. 38

4.8 This figure illustrates the reference orientation with respect to which the robot
yaw angle, xψ, is defined. Since the robot yaw angle is defined with respect
to the center line tangent, independent of the changes in the tunnel shape,
the robot can follow a trajectory with constant yaw. 41

4.9 A sample laser scan data. The ellipse is fit using the method in [16]. In order
to eliminate outliers, we use MLESAC [14]. Outliers are due to operators
walking next to the MAV, noise and lidar failures. 44

4.10 Starting from an initial pose, an ICP iteratively refines xAy,z to reduce dis-
crepancy between the actual range measurements and the rays cast against
the map. This figure shows the process on a tunnel cross-section which can
be at either a horizontal or inclined section. 45

4.11 These figures show robot position estimates along with their respective in-
flated covariances. y and z positions are with respect to the local center line.
Unlike the tests at Allatoona Dam (Fig. 4.12), the tunnel walls were not wet
and reflective, hence we could collect a good dataset close to the junction.
Fig. 4.11b clearly shows the period that the robot is localized along the cen-
ter line. This period is longer in Fig. 4.11d since the robot flies close to the
junction. Localization fails in high covariance regions for both tests. 53

4.12 These figures show position estimates of xAy,z along with their respective in-
flated covariances. In these experiments, the platform flies semi-autonomously.
Due to wet, reflective surfaces, laser scanner failed to take measurements along
the center line direction. Hence we cannot estimate position along the tunnel
axis. Failure in the dataset #2 at the 40th second is due to occlusion. 54

4.13 These figures show results for tests carried in a corridor of length ∼42 meters
in a building at University of Pennsylvania. 3D position estimates along with
their inflated covariances are presented. Videos of this experiment can be
found at: http://mrsl.grasp.upenn.edu/tolga/FSR2013.mp4 55

xi

5.1 This figure shows processes in a data flow diagram. Inputs to the system are
the IMU, lidar and camera measurements, and the map of the tunnel. Partial
pose estimates from the range-based localizer and the visual odometry are
fused by the UKF node. The operator gives way-point commands using an
RC to the trajectory generator output of which is fed to the onboard PD
controller. 59

5.2 This schematic depicts the parameters and vectors explained in Equ. 5.13-
5.35. The bright stars represent the closest voxels among possible other that
each pixel intersects. 64

5.3 Sample laser scanner contour from inside a penstock at Carters Dam, GA.
The two straight segments are from the walls of the tunnel. Since the laser
scanner cannot see the end of the tunnel, contour interrupts (circled). A FIM
is estimated as proposed in [53] separately for each segment and summed to
give the measurement covariance. 68

5.4 These two frames grabbed using the onboard cameras show the typical level
of image detail. 71

5.5 This figure shows the output of the image processing pipeline at each step and
the resultant optical flow field from our visit to Carters Dam, GA. At the top-
left is the raw image. This is a pale image with almost no significant texture.
In order to amplify the texture gradient, we used histogram equalization as
shown on the top-right. Next, an adaptive threshold is applied to get a
black-white image as in the bottom-left. FAST features and KLT tracker are
used to extract and track features on this image. The bottom-right image
shows the tracked feature points and their corresponding optical flow trails
after initial outlier elimination. The corresponding video can be found at
http://mrsl.grasp.upenn.edu/tolga/iros2016/ 73

5.6 This figure shows consecutive binary images obtained after the adaptive thresh-
olding stage of the image processing pipeline. It can be observed that the
effect of irregular illumination is partially recovered. Due to the low resolu-
tion of the images, it is difficult for a human to track blobs across frames.
However a few blobs due to scratches and spots preserve their shapes which
can be easily observed. The KLT tracker can track even the smaller blobs for
3-5 frames which is sufficient for VO. 74

5.7 Sample binary images and optical flow fields. 75
5.8 Masks applied to the images captured from the right and left cameras. The

half strips cover the image areas corresponding to the propellers. When the
robot is flying close to the centerline vertically, the side cameras are exposed
to specular reflection from the wet tunnel surfaces which degrades the feature
extractor and tracker performance. The full strips mask out these image
regions. 76

5.9 These figures show snapshots from three perspectives of the two-step VO
displacement estimation. From left to right are back, right and top views
of the tunnel along the inclined section. The robot poses are denoted as
rotation-translation pairs (Ri, Ti) i ∈ {1, 2}. Grey shades represent the pose
uncertainty. The red dots are the back-projected feature points. The range-
based localizer can only provide lateral and vertical position estimates. The
missing DoF is estimated using VO. 77

xii

http://mrsl.grasp.upenn.edu/tolga/iros2016/

5.10 This figure shows the 360 degrees panoramic image reconstruction obtained
using images from the four onboard cameras. Regions of the panoramic image
is labels with the source camera. 81

5.11 These images show 3D color point clouds plotted in RViz obtained by back-
projecting images from the four onboard cameras onto the tunnel walls. The
water drainage, propellers and peeled off coating can be clearly seen. 82

5.12 A snapshot from the experiments inside a penstock at Glen Canyon Dam,
AZ. The robot is flying fully autonomously using onboard illumination. Also,
in Fig. 5.11 and Fig. 5.10, we show the local 3D reconstruction and the 360
degrees panoramic image generated using the images from the onboard four
cameras. 84

5.13 These plots show the lateral and vertical position estimates of the robot along
with their corresponding inflated variances. During these flights, the robot
was commanded to follow a straight path at a constant distant from the cen-
terline. The oscillations are due to suboptimal onboard controller parameters.
. 85

5.14 These plots compare the VO results with ground truth data on datasets col-
lected in a penstock at Glen Canyon Dam, AZ. The x-axis enumerates the
instants that the markers on the walls are seen at the center of the right
camera. 86

5.15 These figure show 3D position estimation results on a dataset collected along
the inclined section of a penstock at Carters Dam, GA. y − z positions are
estimated by the range-based estimator, and x (axial position) is estimated
using visual odometry. The left and middle images show the flow field overlaid
on the camera view. Green circles focus on the scratches on the wall which
we use for manual loop closure. The two blue dots on the plot show axial
position estimates at the loop closure. The drift along the ∼ 40 meter flight
is < 1 meter. 87

5.16 3D position estimation results from two experiments at Carters Dam, GA. y−
z positions are estimated by the range-based estimator and x (axial position)
is estimated using visual odometry. Scratches on the tunnel wall that we use
to manually detect loop closure are circled in green. 88

6.1 The overall system diagram. The inputs are data from three types of sensors
and the user commands given through the GUI or the radio control. Local
Mapper and Range-Based Pose Est. uses the IMU and 3D point cloud data
to generate a local map of the tunnel and localize the robot within that
map. Camera Picker chooses one or more of the cameras and relays the
corresponding frames to the Visual Odometry block. The details of Visual
Odometry is presented in the Chap. 5. 92

6.2 A typical point cloud data captured from inside a penstock at Center Hill
Dam, TN. The raw point cloud is subsampled using a voxel filter with a cell
size of 5 cm. Since the point density is small in the elevation direction, this
filter affects only the point density along the azimuthal direction. 93

6.3 Accurate surface normal estimation is not possible beyond a certain distance
from the sensor origin since the points get prohibitively sparse. For this
reason, the voxel filtered point cloud is trimmed. 94

xiii

6.4 Algo. 9 illustrated. These figures explain the components of the range-based
pose estimation and the local mapping algorithm. Points farther than r me-
ters from the sensor are drawn in light-blue and never used in the calculations.
The inlier data (blue points) is denoted by P . Position uncertainties of sample
points, formula of which is given in Equ. 6.8, are overlaid in light-blue. Nor-
mal vectors of points are plotted in orange. Uncertainties of sample normal
vectors are also plotted in light-orange formula of which is given in Equ. 6.7.
This figure also illustrates α and A further details for which are provided in
Sec. 6.4.1. The origin of L is coincident with origin of the center segment, O0. 95

6.5 A sample point cloud data and surface normal estimates. The normals are
estimated to be the eigenvector of the scatter matrix corresponding to its
smallest eigenvalue (Equ. 6.6). The normal directions are fixed according
to their relative orientation with respect to the view port. Although some of
tunnel surface normals are pointing outwards, this does not affect the cylinder
fitting process. 96

6.6 This figure shows a sample point cloud data and reference frame estimates
along with their corresponding color-coded point cloud segments used in their
estimation. The input point cloud is segmented and to each segment a refer-
ence frame is fitted as explained in Algo. 3-4. The point due to objects and
human operators are filtered out from the point cloud segments as explained
in Algo. 5-6. 100

6.7 This figure shows a sample segmented point cloud data. To each segment a
cylindrical surface is fitted using the method summarized in Algo. 7. 106

6.8 Photos of the DJI experiment platform flying inside a penstock at Center
Hill Dam, TN. The onboard illumination is required for the testing. However
both for safety concerns and for imagery collection, we kept the LEDs on. . . 115

6.9 These figures show two instants captured during our tests at Center Hill Dam,
TN. In both cases the robot is flying semi-autonomously in shared-control
mode. 117

6.10 Screenshot from the RViz visualization tool showing the robot flying with
shared control along the horizontal section of the tunnel. The colored point
cloud and their corresponding meshes demonstrate the output of the segmen-
tation and the cylinder fitting algorithms. The robot is shown with a red
CAD model at the very center of the meshes. 118

6.11 Screenshot from the RViz visualization tool showing the robot flying with
shared control along the inclined section of the tunnel after ∼ 20 seconds
after the take off. The estimation results of this experiment are presented in
Fig. 6.12c. The algorithms does not require any modifications to handle the
transition between the horizontal and the inclined section. 118

6.12 Vertical and lateral position, xy,z, of the robot while traversing entire pen-
stock. Shades around the plots are the corresponding inflated standard devi-
ations. In these tests, the robot was commanded to follow a straight path at
a constant distant from the centerline. The offset in the z position is due to
the inaccurate controller parameters. 119

7.1 Illustrations for various piecewise-smooth-generalized-cylinder (PSGC) shaped
environments. The center line curves of the right two topologies are piece-wise
functions. 122

xiv

7.2 Generation of Bézier knots from tunnel axis tangents illustrated on a sample
three segment local map. 125

7.3 These illustrations show two cases where the closest point on a spline (dark
green) is not unique. (Left) The set of closest points to the blue query point
located at the center of the circular arc is the whole arc. (Right) There are
two closest points to all query points along the dashed blue line one on each
linear section of the curve. 127

7.4 These illustrations show two cases where the closest point on a given spline
to a knot is not unique. In the case depicted on the left, by exploiting the
order of knot measurements {K}, one of the two closest points (red) to K3 is
eliminated. On the right illustration, since the relative position of K3 and K4

changes, the ordering of measurements does not suffice to disambiguate the
closest point to K3. 128

7.5 Synthetic data on S2 sampled from uniform, girdle and bipolar distributions. 131
7.6 Sample surface normal data from Center Hill Dam experiments and the cor-

responding girdle distribution, i.e. ς < 0, fit with the method explained in
Sec. 7.4. (a) Likelihoods are color-coded with blue and black corresponding
to low and high values respectively. (b) Vertices of the mesh are used as
hypothesis. (c) Point cloud from which the distribution is obtained. 135

7.7 The system diagram of the estimator. In this chapter we explaine only the
components directly related to the proposed improvements. 151

7.8 These RViz snapshots show failure of the approach in 6 failing while hov-
ering close to the gate where the circular cross-section assumption does not
hold. (a) Orientation of some segments are estimated wrong and the spacing
between segments are not uniform. (b) Since the first segment is estimated
wrong, the fitting process is early terminated. 152

7.9 These RViz snapshots show failure of the current approach while the robot is
hovering at the same region as in Fig. 7.8. Here, we excluded Watson distri-
butions from the optimizer and disabled outlier elimination to demonstrate
their effects. 153

7.10 Two cases showing that the current method performs successfully when the
robot is hovering close to the gate where the previous method and this method
with the filtering disabled fails. The second snapshot also show the map along
the inclined section of the tunnel. 154

7.11 These plots show the radius estimate along the centerline estimate of the
tunnel as a function of time and line integral of centerline estimate. The time
spacing between each curve in the plot is 0.7 seconds deliberately kept large
for clarity. 157

7.12 These plots show the radius estimate along the centerline estimate of the
tunnel as a function of time and line integral of centerline estimate color coded
as a function of estimated tunnel radius. This plots shows the complete radius
estimate history. 158

7.13 These plots show the uncertainty in the radius estimates along the centerline
of the tunnel as a function of time and line integral of centerline estimate
color coded as a function of estimator uncertainty. The regions where the
uncertainty peaks match with the regions where the radius estimate diverges
from the ground truth value as shown in the other figures. 159

xv

7.14 These plots show the inclination of the local map tunnel axis over the course
of a flight. The vertical axis is the s coordinate along the centerline. Color
shows the angle between the centerline tanget at a given s coordinate and the
ground plane (i.e. plane normal to gravity vector). Light blue that covers
almost haft the plot corresponds to ∼ 0 degrees and green corresponds to
∼ 30 degrees. The blue and green plateaus correspond to the horizontal and
inclined sections of the tunnel with ground truth inclination angles of 0 and
30 degrees. Empty regions are where the inclination estimate is inaccurate
and, hence, are not plotted. 160

7.15 Positional uncertainties at a sparse set of points on the centerline. 161

8.1 Sample AprilTag fiducial markers of sizes 4× 4, 5× 5 and 6× 6 with 1 pixels
border thickness. 164

8.2 We use more than a dozen AprilTags randomly sprinkled on one side of the
tunnel as the camera calibration pattern. 165

8.3 First group of tags are placed along a curve marked with the help of self-
leveling laser level. Also, adjacent tags are placed as a fixed distance. These
constraints are implemented as pose-graph factors in TagSLAM. 166

8.4 (Top) The self-leveling laser level is attached at the tunnel surface from its
magnetic mount. (Bottom) The top edges of the first group of tags are aligned
with the laser beam. 167

8.5 A photo of the penstock with both the aligned and randomly placed tags. . . 168
8.6 Snapshots from the RViz visualization tool that show the mapping results.

This figure includes only the tags that are planed along a plane with the help
of laser level. 169

8.7 Snapshots from the RViz visualization tool that show the mapping results
from different views. 170

8.8 These plots show the pixel projection errors for maps reconstructed using
four different datasets. The dark green curves are the median values. The
red shades show the minimum and maximum projection errors, and the green
shades show the standard deviation of the error. The two dashed lines show
the overall mean error and the standard deviation of the total error. 171

8.9 Distances between adjacent tags placed along a plane for different maps re-
constructed by TagSLAM. 172

8.10 Distances between tags placed along a plane and the plane fit to these tags
for different maps reconstructed by TagSLAM. 173

8.11 Centerline approximated as a 3D Bernstein polynomial. Its control points are
the intersection of opposite tag normals. 175

8.12 These plots show the distance of each map tag to the centerline approximated
as a Bernstein polynomial, i.e. local radius. The red line is the continuous
approximation of the tunnel radius with the individual radius estimates as its
control points. 176

8.13 Comparison of the range-based approaches and TagSLAM on dataset #1. . . 178
8.14 Comparison of the range-based approaches and TagSLAM on dataset #2. . . 179
8.15 Comparison of the range-based approaches and TagSLAM on dataset #3. . . 180
8.16 Comparison of the range-based approaches and TagSLAM on dataset #4. . . 181

xvi

Chapter 1

Introduction

Multi-rotor Micro Aerial Vehicles (MAV) equipped with onboard sensors have become ideal

platforms for autonomous navigation in complex and confined environments. This is due to

multiple reasons with the most prominent a few being their ease of manufacturability with

only off-the-shelf equipment, and superiority to ground vehicles in terms of their ability to

traverse the 3D space with great ease. Multi-rotor MAVs are also much easier to maintain

and safer for indoor operation compared to single-rotor helicopters due to their simple design

and smaller propeller sizes respectively. Consequently, MAVs are platforms cut out for real-

life applications which include exploration [94], inspection [101], [127], [131], mapping [120],

interaction with the environment [128], agricultural inspection, pest control [116], search

and rescue, and tactical engagement just to name a few.

MAVs, on the other hand, can be exploited in real-life scenarios only when equipped with on-

board autonomy primarily due to safety concerns and their unstable dynamics. For instance,

it is almost practically impossible to control an MAV without an onboard attitude stabilizer

which is the lowest level of autonomy required for human operation. More complicated cases

such as infrastructure inspection and air delivery, require more sophisticated components to

attain safe autonomy such as full state estimation, mapping of the environment, obstacle

avoidance and high-level human-robot interaction.

1

The full state estimation and environment mapping topics are studied under Simultaneous

Localization and Mapping (SLAM) which has been a major problem of interest for the

robotics society for more than three decades [25], [40], [41]. Various successful probabilistic

methods [22] as well as graph-based solutions [50], [79] have been proposed that brought

the literature to a saturation point. These methods temporally integrate state and map

information obtained from sensory data over a certain time interval. While a single sensor

such as a 2D/3D lidar, a color or RGB-D camera might be sufficient for state estimation

and mapping in many scenarios, there are also methods that do sensor fusion for improved

robustness and fail-safe operation. On the other hand, path planning and obstacle avoidance

are possible only with an accurate and precise SLAM output. Given a dense map, a planner

algorithm builds a path assuring a collision free trajectory [86] hence inherently avoiding

obstacles. There are also studies such as [102], [103] which propose methods for navigating

through narrow passages respecting the nonholonomic dynamics of these platforms.

In this work we focus on the design of state estimation and mapping algorithms using dif-

ferent sensor modalities for axisymmetric tunnel-like environments such as penstocks and

corridors. As opposed to existing studies which consider these problems in feature-rich envi-

ronments, we propose methods which assume a specific geometry for the environment that

can be represented parametrically. Furthermore, we study the same problem for different

sensor payloads and compare their capabilities and performance. The proposed methods are

extensively tested inside four different penstocks. To our knowledge, this is the first robotics

field study in the literature that focuses on this specific problem.

1.1 Motivation

A penstock is the water way of a dam that extends from the electric generator turbines

located below the river level up to the lake level. Penstocks are usually made out of riveted

steel plates or steel-reinforced concrete. These structures have diameters ranging between 5

to 20 meters and lengths between 70 to 250 meters.

2

Since they are exposed to huge, oscillating loads for long periods, regular inspection and

maintenance of penstocks are vital. If crack and rust formations are not treated timely,

catastrophic consequences are inevitable such as collapse of the penstock, flood and fire.

Current inspection and maintenance practices are carried manually by dam workers either

by swinging down from the gate, tethering carts or building scaffolds. However, these

conventional methods are dangerous, potentially inaccurate, labor and cost intensive. This

work proposes a solution that utilizes MAVs to replace the conventional methods for visual

inspection of penstocks.

Penstocks pose unique practical and theoretical challenges encountered very rarely in a

typical robotics field application. Since penstocks are steel structures, neither a Global

Positioning System (GPS) nor a compass can be used for state estimation. A penstock has

almost no geometric cues except for changes in the bending profile and tunnel diameter.

Lidars sometimes fail measuring distant points since wet and muddy surfaces behave like

a mirror and black tar coating absorbs the laser beam. Also RGB-D sensors completely

fail when oriented towards wet surfaces. Furthermore, the visual texture on the tunnel

surface is very weak in most parts of the tunnel. Visual cues are usually due to either rivets,

welding lines which may be meters apart from each other, rust spots or peeled off protective

tar coating. This ironically means that a penstock in good condition has almost no visual

texture prohibiting autonomous inspection. Since there is no external illumination inside

a tunnel, vision-based algorithms can work only with powerful onboard illumination which

complicates the platform design. Besides, experimentation inside a penstock is grueling and

arduous for researchers due to continuous water drainage, slippery mud covering the tunnel

floor, steep inclination and rust dust. As a result, autonomous navigation of an MAV inside

penstocks is, on its own, a valuable field robotics study with both unique theoretical and

practical challenges. In this work, we seek for solutions to these challenges.

3

1.2 Problem Statement

In a SLAM framework, front-end is responsible for extraction of salient features from the

sensor data such as image or point cloud features, and association of these features accross

frames. Typical indoor and outdoor settings for robotics applications are rich in geometric

and visual cues such as an office or an urban area. Hence, most SLAM front-end methods

(i.e. feature extraction and matching) are designed with this presumption. To illustrate,

range-based methods require geometric cues such as non-degenerate set of planar surfaces

[90], [95], [136], edges and corners [134] for data association. This is then used for point

cloud registration and relative pose estimation. Similarly, vision-based methods either use

salient image features [59], [121] or pixel intensity values [107] for data association. Camera

displacement is then estimated as the relative pose which minimizes either the total projec-

tion error or intensity difference respectively. Benchmarking studies such as [88], [93], [96]

show state of the art in accuracy and robustness when data association is possible.

A typical penstock neither has geometric cues, nor offers imagery with sufficient texture

which are required by most front-end methods. To illustrate, point cloud data collected with

a 3D lidar consists of indiscriminate partial cylindrical patches from which no edge or corner

can be extracted. Furthermore, consecutive point cloud data often do not overlap sufficiently

when the robot pitches more than several degrees. Lastly, the long tunnel geometry prohibits

measuring position along the tunnel axis. Although the geometry of a penstock does not

pose any problems for a vision-based solution, lack of sufficient illumination or features

may become prohibitive. Also, in most penstocks there is always mist due to continuous

water drainage, rust and tar dust as well. The propeller downwash kicks up mist and dust

which often completely blocks the field of view of onboard cameras for several seconds long

sufficient to lose tracking. Due to the reasons only some of which we listed here, existing

SLAM methods cannot be directly applied in this scenario. This work aims to fill this gap

in the literature with methods crafted for this specific field robotics scenario.

4

1.3 Research Problems

1.3.1 Range-Based SLAM

Many variants of range-based SLAM solutions rely on the presence of geometric cues for

feature extraction and matching [13], [134], while others use point-to-(point/line/plane)

(P2X) approach for data association [30], [64], [105]. These two types of methods are often

used in combination where a feature-based method finds an initial alignment, and a P2X-

based method refines the alignment. This scheme speeds up the convergence rate and also

proves successful on fast moving platforms [64] and offers a solution to the kidnapped-robot

case [69] as well. In a GPS-denied, dark tunnel environment the wisest choice of sensor is

a lidar. Although an RGB-D sensor provides data in a similar format, due to its working

principle, RGB-D cameras perform very poorly inside these environments. Obviously, a

feature-based method would quickly diverge after finding no or too few, yet low quality,

features in a long axisymmetric tube. On the other, the latter approach usually converges

quickly when initialized close to the actual robot pose, but it gets trapped in local minima

due to the non-convex nature of orientation estimation. In this work, we evaluate these

two types of methods in a tunnel setting. We also approach this problem from a different

perspective where we parametrically model the environment.

1.3.2 Sensor Fusion

Sensors provide useful information only when they are used within their design limitations.

Therefore, a sensor might dysfunction when one or more of the working conditions are not

satisfied. For example, in a setting with insufficient illumination, repetitive texture or when

a trajectory that does not offer sufficient parallax is followed, a single camera provides almost

no 3D pose information. Similarly, a lidar in an environment covered with light absorbing or

reflective materials would fail to take measurement at all, or data association on the point

cloud might be impossible in case there is too much clutter. In case of an IMU, very fast

5

motions for long periods of time might render it useless due to sensor saturation or lack of

gravity correction. A solution for such cases is to use a heterogeneous suit of exteroceptive

sensing modalities. Sensor fusion algorithms can be used to incorporate information from

each sensor to increase the robustness of the estimator and also save the platform from

failing. In our case, none of the above three types of sensor suffice for 6 DoF state estimation.

This is because an MAV equipped with only a range sensor cannot localize itself along the

long, axisymmetric tunnel axis. Secondly, onboard cameras are unreliable due to weak

illumination and texture on the tunnel walls. However, full state estimation can be achieved

with the fusion of these sensors.

1.3.3 Tunnel Mapping

Mobile robotics applications that use relative measurement sensors such as lidars and cam-

eras require a map as a reference for global localization. Information from these sensors is

aggregated on a map in various formats such as a point cloud [43], [84], a set of keyframes

with image features [59], [107], [121] or a textured mesh. The map can then be used for

path planning and obstacle avoidance, 3D reconstruction of real sites such as mines and ship

hulls. The latter purpose is especially intriguing to us since the labor intensive and dan-

gerous task of visual inspection of a penstock can be performed with an autonomous MAV.

The maintenance engineer can simply use either the 3D virtual reconstruction of the tunnel

or the imagery collected with onboard cameras to localize regions that require maintenance.

Also either a parametric or point cloud representation of the tunnel can be used to avoid

obstacles such as human operators, scaffolding or tunnel walls.

6

Chapter 2

Related Work

2.1 Inspection Robotics

After more than a decade of research on MAVs, they have become an important robotic

platform employed in many real-life applications some of which are infrastructure inspection,

air delivery, photography, search and rescue. Among many interesting application areas is

ship vessel inspection as in [110]. The authors autonomously fly an MAV equipped with

an IMU, downward facing camera and a 2D lidar inside and outside of a ship hull to find

defects in the metal structure such as peeled off coating, corrosion and cracks. The onboard

state estimator either uses the lidar or the camera exclusively while moving horizontally and

vertically respectively. Hence [110] switches between two types of estimators rather than

implementing a sensor fusion algorithm. The additional two cameras are used to collect

imagery during the inspection process.

In an industrial boiler inspection scenario, [87], [101] use a quadrotor equipped with an IMU

and a stereo rig tightly coupled to estimate 6 DoF robot state. Equipped with onboard

power-LEDs, the platform does not require any external illumination for the onboard cam-

eras to work. The researchers adopt an existing method for state estimation details to which

is left to the original paper. The robot is deliberately commanded to fly close to the walls

7

so as to sufficiently illuminate the FOV of the stereo rig. If the robot moves away from the

walls to a distance where the onboard LEDs cannot sufficiently illuminate the camera FOVs,

it can easily diverge and lose control.

In a similar study, the authors of [117] inspect mine shafts with a manually controlled MAV.

This work does not consider the online state estimation and mapping problems, but rather

focuses on evaluating the platform under the challenging hot, wet and dusty mine conditions

as well as strong vertical air flows along mine shafts. The 2D lidar and stereo image data is

then post-processed to reconstruct the 3D model of mine shafts. However, this interesting

and challenging MAV application requires an expert pilot and clear view of the platform

throughout the flight.

[115] also considers mapping of mines. This study uses a pair of rotating 2D lidars and

an IMU mounted on a truck that drives through a 17 km long mine to collect data. The

conventional surveying methods can be replaced by this much faster method regardless of

how long the mine corridors are. In their results, the authors claim that the resultant map

offers accuracy better than that of a lidar. This was possible through using continuous-time

non-rigid registration, scalable place recognition, and robust pose graph optimization. The

total time for 3D offline reconstruction takes only half the time for data collect. This is

perhaps the closest study to ours. But in this case, the mine walls have enough geometric

texture using which motion along the shaft axis can be inferred. However, this is not the

case inside a steel or concrete penstock.

In studies similar to ours [77], [78], [118], Hansen et al. uses a small wheeled robot that

can fit into 400 mm diameter steel natural gas pipes for inspection purposes. This robot

performs visual SLAM using an onboard fisheye camera and sparse structured light. While

the robot generates a sparse map for localization, it also constructs a textured 3D mesh

for offline visual inspection. The authors use prior knowledge about the geometry of the

pipes to increase reconstruction quality as we do in penstock inspection. It may be argued

that a similar approach could be used inside a penstock. However, ground vehicles such as

proposed in [118] cannot attain sufficient traction on the slippery walls along the inclination.

8

2.2 Simultaneous Localization and Mapping

Mobile robotic autonomy is possible only if the robot can infer its pose using onboard sensors

only. For this, a robot requires a map of its surroundings as well as robust algorithms to

localize itself within that map. However, maps such as building blueprints or 3D meshes are

very rarely available. Hence, in order to attain a higher level autonomy and independence

from human intervention, the map of the environment has to be constructed by the robot.

Simultaneous Localization and Mapping, SLAM, is a topic in robotics that studies these two

important and crucial requirements of mobile robotic autonomy [39]–[41].

The SLAM topic has many theoretical and practical challenges making it an attractive

field to researchers for the past three decades. In an early study, Thrun [26] lists the key

challenges three of which are sensory noise, high dimensionality (robot and map states),

and data correspondence (association). These three challenges shaped the direction the

literature pursued. For example, the sensory noise as well as pose and map uncertainties are

almost always modeled as Gaussian although in reality this rarely holds. This choice is due

to the fact that convolution of two Gaussian distributions gives another Gaussian which is

fundamental in the derivation of the renowned Kalman Filter (KF) [1], [39].

On the other hand, there are many systems with multi-modal, widely spread uncertainty

characteristics that cannot be modeled as a Gaussian. The nonparametric particle filter-

based (PF) approach and its variants, also known as Monte Carlo methods [18], [25], [61]

provide approximate representations of arbitrary distributions. Although PF-based methods

are more powerful compared to the parametric KF-based approaches in this respect, they

suffer from the curse of dimensionality [39]. As the dimension of the state space increases,

the number of particles required to represent the uncertainty increases dramatically making

PF computationally intractable. The Rao-Blackwellized particle filter (RBPF) [19], [56]

remedies this shortcoming of vanilla PF by splitting the state space into parts. A small

subset of state parameters are tracked by a PF while the remaining is filtered using a

suitable KF variant for each particle. Depending on the choice of state partitioning, this

9

significantly reduces the time complexity.

Until recently, KF and its variants have been the de facto tool for inference. However, as

the dimension of the pose and map increases, KF becomes intractable for real-time onboard

computation due to a matrix inversion in KF. Some researchers attempted to surmount this

bottleneck through splitting the map into parts [36], [54], [66] or using matrix-inversion-free

information filter [35], [63]. These elegant approaches however do not offer a solution to

the quadratic growth in time and space complexity with the number of landmarks in the

map. Eventually, the filtering approach started to be questioned [50], [92]. This is because

a KF relates every state entity to all others (the covariance matrix) and this is really not

necessary. [29] was one of the earliest attempts to remove weak connections between state

entities. Using junction trees, [29] is able to reduce the complexity to linear. This approach

periodically thins the tree to maintain the filter tractable. Studies such as [37], [45] reduced

the time complexity using similar approaches.

An intuitive way to formulate the SLAM problem is to build a graph with its nodes being the

robot poses at different times and the edges being constraints between the poses [70]. Either

odometry or landmark observations are used to define these constraints. The configuration

of robot poses which satisfies the constraints gives the robot trajectory. This can then be

used to reconstruct the map by aggregating sensory measurement at their corresponding

robot poses [50] after optimization.

[50] is one of the earliest attempts to formulate SLAM as a graph optimization. This

method is several folds faster than filtering methods such as Extended Kalman Filter (EKF)

as claimed by the authors. Instead of finding a most likely robot trajectory at once, [50] uses

Stochastic Gradient Descent (SGD) to tackle the problem in real-time at the cost accuracy.

Just a year later, Grisetti et al. published their solver, TORO [57], which improves over the

work of Olson [50]. Instead of using a graph as the data structure, TORO uses a spanning

tree of this graph. This way, upon a loop closure the optimizer updates only the landmarks

within the loop reducing the time complexity drastically. It also distributes the error onto

all the affected nodes using the slerp algorithm [8] which results in smoother trajectories.

10

Further improvements were obtained by [71] using hierarchical pose-graphs. This work is

motivated by the idea that for loop closure, the SLAM front-end should not need to search for

correspondence over all other poses. Their hierarchical map groups poses and landmarks into

chunks based on a distance metric to reduce the search space for loop closure. Furthermore,

only higher level nodes of the graph are updated as long as there is no inconsistency in the

lower-level nodes. Grisetti et al. later came up with an improved implementation named

g2o [79]. As opposed to their earlier work [57], g2o does not assume the uncertainties to be

spherical and can also handle ill-conditioned measurement covariances. Similar formulations

are presented by Kaess et al. dubbed as Square-Root SAM [44], iSAM [65] and iSAM2 [91].

In this section we reviewed some of the important studies which consider the back-end of

the SLAM problem. The primary concern of these methods are handling uncertainties and

improving time complexity which are the first two key challenges as listed by Thrun in [26].

In the following sections, we will consider the SLAM front-end, i.e. the data association

problem, which is the third item in this list.

2.3 Range-Based Methods

Lidars and RGB-D cameras are the most widely used range sensors in robotics applications.

These sensors provide relative pose information with respect to previous range readings and

can also be used for global localization if a map is available.

In an early work, Lu et al. [13] uses 2D range measurements to obtain optimal pose es-

timates. The range readings are aligned using either point-to-point (P2P) or line-to-line

(L2L) correspondences. A network of relations (i.e. graph) is constructed from wheel and

range odometry with connection strengths defined using uncertainties. In this respect, [13]

is one of the earliest studies that uses pose-graphs.

The family of point cloud registration algorithms is usually referred to as Iterative Closest

Point (ICP). Many variants of ICP algorithms have been proposed with different metrics for

data association, heuristics to improve convergence characteristics and reduce computational

11

requirements. A good comparative study on efficient derivatives of ICP algorithm has been

presented by Rusinkiewicz et al. [23]. A recent and very detailed survey on ICP algorithms

and point cloud registration in general is also presented by Pomerleau et al. [122]. In an

outdoor SLAM application using a 3D lidar mounted on an autonomous ground vehicle,

[43] uses an ICP variant that associates a point to its closest model point. In this work,

alignment is obtain using a Levenberg-Marquardt non-linear optimization. The odometry

results at each step is tested against a classifier trained with manually labeled data.

Censi proposes a method in [64] for 2D scan alignment based on a point-to-line (P2L) metric

with a closed-form solution. Although this method is not robust to large initial relative

rotations, its convergence rate is much better than P2P metric otherwise. This is basically

because the P2L metric quadratically reduces the error and also point-line correspondences

usually do not change after an iteration reducing time required for correspondence search.

On two other papers [52], [53], Censi proves uncertainty bounds of an ICP algorithm and

provides a covariance estimate for a planar ICP.

A completely different data association scheme from the P2X heuristic is proposed by Mag-

nusson et al. in [60]. In this work, the authors use the Normal Distribution Transform

(NDT) which transforms the raw point cloud data into a collection of 3D normal distribu-

tions. To each set of points that fits into a voxel of a 3D occupancy grip is fitted a 3D

normal distribution. The minimization function is then written using the Mahalanobis dis-

tance between two point clouds. The authors test their method in a challenging mine survey

application.

Olson, in his work [69], presents a probabilistically-motivated 2D scan-matching algorithm.

This method is built upon the idea that two scans are aligned the best when their cross-

correlation is maximum. He claims that although his method is computationally more de-

manding, the results are better in quality. Using a multi-resolution 3D grid (two translations

and a rotation), this method can do global localization.

Until MAVs became more popular, SLAM experiments used to be carried on only ground

vehicles. [68] is one of the early studies which applies the existing mapping and localization

12

algorithms on a small MAV indoors. This work proposes a navigation system consisting of

a quadcopter equipped with an IMU, a 2D lidar with a mirror setup to deflect some of the

lidar rays to the floor for altitude measurement and a Gumstick embedded CPU. Shen et

al. [84] uses a similar setup for mapping a multi-floor building. Despite low computational

budget, this system was capable of running all computation onboard including localization

and mapping, planning and controller.

There are several other studies which focus on utilizing range sensor for MAV control and

navigation. [86] uses an MAV with an onboard RGB-D sensor. A vision-based odometry

is used for localization and the depth data is used to construct a 3D occupancy grid map

which is used for path planning. Due to low computational power, mapping is done on a

remote workstation. With a similar configuration [120] flies multiple MAVs for collaborative

mapping. This work simultaneously localizes multiple MAVs using a vision-based method

inferring the scale factor from the depth data. The swarm of MAVs collaboratively builds a

dense map of the environment. Finally, Zhang et al. [133], [134] uses an onboard 3D lidar

for mapping and navigation with a large MAV outdoors. The resultant point cloud map of

this algorithm is very detailed allowing for safe navigation and accurate path planning.

2.4 Vision-Based Methods

Due to their high cost, weight and narrow FOV (e.g. 2D lidars) lidars are often not con-

sidered in MAV applications. Especially data association on lidar data collected from un-

structured, cluttered environments is a difficult problem. On the other hand, cameras are

cheap, light-weight and provide rich information about the environment. Due many factors

these being only a few, cameras are one of the mostly studied sensors for localization and

mapping.

There are two approaches to data association between images : feature-based and intensity-

based. A feature-based method requires extraction and matching of features which may

introduce errors due to feature position inaccuracies [62]. Furthermore, this causes ex-

13

tra burden on the CPU which is an undesired effect especially for small MAVs. On the

other hand, the latter family of methods use the pixel intensities and do normalized cross-

correlation search to associate pixels across frames [20], [55]. Thus, Visual Odometry (VO)

methods using this approach is often called direct methods [106], [107], [129].

There is huge literature on feature extraction and matching. Some of the most widely used

feature extraction methods are Harris [9], FAST [51], [75], SIFT [31], SURF [42] to name

a few. The latter two methods also provide feature descriptors for feature matching across

frames or object/scene recognition. For example, the authors of [38] use SIFT features for

localization and sparse mapping on a ground vehicle in an office setting. Tuytelaars et al.

[62] provides a very detailed study on local invariant feature detectors. This work discusses

the qualities of a good feature detector and reviews prominent studies of its time.

Vision-based methods are applicable wherever the robot can extract salient features. Espe-

cially for outdoor settings, Visual SLAM (VSLAM) offers a promising alternative to GPS-

based navigation systems such as in [85]. The authors claim their work does not suffer from

drift, estimates 6 DoF MAV state onboard and to be the first MAV VSLAM application.

Shen [113] studies VSLAM on an MAV with transitions between indoor and outdoor set-

tings. This is especially a difficult task due to saturation and slow exposure adjustment

of the cameras. In a setting close to ours, Alismail et al. [129] uses binary descriptors for

localization and mapping inside a very poorly illuminated mine.

14

Chapter 3

Preliminaries

3.1 Experimentation Environment

Methodologies proposed in this work focus on state estimation and mapping inside ax-

isymmetric, long, tunnel-like environments. In particular, we are interested in flying MAVs

autonomously inside penstocks. We also tested these methods inside long corridors in uni-

versity buildings during the software development cycle.

Penstocks are either steel or concrete tubes that conveys water from a lake to the elec-

tric generator turbines at the bottom of a dam (Fig. 3.1). Penstocks are almost perfectly

Figure 3.1: An array of steel penstocks.

15

Figure 3.2: A partial CAD model of a penstock in Glen Canyon Dam, AZ. This penstock
is one of the largest in the US with a total length of more than 250 meters and a steep
inclination of ∼ 60 degrees.

cylindrical in cross-section, and have multiple sections with different orientations. A sample

CAD model of a penstock in Glen Canyon Dam, AZ is shown in Fig. 3.2. Their diameters

range between 5 to 20 meters depending on the size of the dam. In a typical penstock, the

first section is the scroll cage that wraps around the giant turbine of diameter ∼ 5 meters

(Fig. 3.3). Following that is usually a horizontal section which might bend to the sides de-

pending on the shape and width of the river bed. The next section has an inclination that

ranges from gentle slopes to close-to-vertical as in Glen Canyon Dam, AZ. Depending on the

depth of the dam wall, a penstock may extend further after the inclined section. The end

of a penstock is blocked by a gate. The shortest penstock we experimented is ∼ 70 meters

while the longest is longer than 200 meters.

Penstocks are pitch-dark, uniaxial and axisymmetric tunnels with no geometric features

except for changes in the bending profile and diameter (Fig. 3.5-3.6). In addition to this,

close to the gate, tunnel cross-section becomes rectangular offering some geometric cues.

Besides being pitch-dark, penstock walls do not offer visual texture due to uniform protective

tar coating. However, penstocks with peeled off coating offers some visual texture such as

shown in Fig. 3.4. The walls of steel penstocks are cylindrically bent steel plates riveted

along a seam line offering some visual texture too. Lastly, in concrete penstocks, cracks and

16

Figure 3.3: A turbine in Glen Canyon Dam, AZ exhibited for visitors. Its size can be
compared with a visitor standing next to it.

Figure 3.4: An image from inside a penstock in Allatoona Dam, GA. This image was taken
from a quadcopter flown manually close to a patch that needs maintenance.

17

Figure 3.5: (Left) Custom-designed hex-rotor platform hovering ∼ 4 meters from the gate
in shared-control mode. (Top-right) FPV camera snapshot showing the gate and the water
gush. (Bottom-right) CAD model of a penstock at Center Hill Dam, TN.

limestone formation provide richer visual cues compared a steel tunnel.

The other three types of sensors widely used in MAV automation are magnetometer, GPS

and barometers. Due to the obvious reason that penstocks are made of steel or steel-

reinforced concrete, we never consider magnetometer as a alternative sensor. The consider-

ations apply to GPS. Finally, due to the strong vortices formed by the propellers, barometer

measurements are prohibitively noisy.

In conclusion, the characteristics of penstocks and their effects of widely used sensor modali-

ties pose a number challenges in state estimation and mapping. It is theoretically impossible

do localization using range sensors along the tunnel axis since either the length of the tunnel

is longer than the range of the sensor or the ends of the tunnel are outside the FOV of the

lidar such as in the case while the robot is flying along the inclination. A sample data is

shown in Fig. 3.7. Furthermore, due to the uniaxial and axisymmetric cross-section, roll

and pitch angles cannot be estimated using only relative measurement sensors (i.e. lidars

and cameras). Lastly, inside steel penstocks, neither GPS, compass nor barometer works

properly.

18

Figure 3.6: A photo taken from inside a penstock at Glen Canyon Dam, AZ while the KHex
platform is flying autonomously. The robot is tested for visual odometry with onboard LEDs
as the only source of illumination.

Figure 3.7: A snapshot from RViz captured when the robot is flying along the inclined section
of a penstock at Center Hill Dam, TN. The shape of the point cloud data is almost the same
throughout the inclined section hence providing no information about robot’s position along
the tunnel axis.

19

In the past five years, we visited five different sites to test and improve various approaches

to the state estimation and mapping problems. These site are :

• Carters Dam, GA

• Allatoona Dam, GA

• Glen Canyon Dam, AZ

• Center Hill Dam, TN

• Walter Dam, PA

In the subsequent chapters, we will explain experiment results on these sites.

3.2 Experiment Platforms

3.2.1 Platform Requirements

While the size of an MAV almost proportionally affects the maximum payload, the same

factor also brings about safety concerns due to the platform weight and larger propeller

sizes. For example, a platform with larger propellers can carry more sensory payload such

as cameras and lidars. However, an MAV with large effective diameter is undesired when

flying inside a tunnel with a relatively smaller diameter since the propellers may clip the

walls. Also, when flying close to the walls, external disturbance due to the vortices generated

by the propeller downwash disturbs the stability. The flight time should be long enough to

traverse a penstock of length ∼ 300 meters one-way with steep inclination such as in Glen

Canyon Dam, AZ. This requires a larger battery hence a larger platform. A design that

allows for easy maintenance is also desirable since the adverse conditions inside a penstock

may require replacement of some mechanical and electronic components after an experiment.

Lastly, the choice of minimal onboard sensor suit sufficient to autonomously fly an MAV

through a pitch dark, long and featureless tunnel is maybe the most important aspect of

20

platform design. The sensor pack may included one or multiple range sensors and cameras

depending on the specific SLAM formulation. Hence, finding the best design is a constrained

optimization problem with many equally admissible solutions.

In field robotics, the platform choice, its capabilities and sensory payload play a crucial

role. Only very recently professional commercial MAVs such as Ascending Technologies’

Pelican and DJI’s Flame Wheel series became available to the researchers. With the emerge

of alternative commercial MAVs, we updated our platform design over the years. We also

redesigned our MAVs as new sensors such as Velodyne’s 3D Lidar became available to match

application requirements. In this section, we go through three different platforms that we

used over the past five years.

There are a number of MAV design parameters which are propeller count, size and weight,

ease of maintenance and stock spare part availability, battery type, sensor pack such as IMU,

cameras and lidars. Unfortunately, there is no simple way to determine the best design

choice since these parameters are coupled with each other. For example, with the number of

propellers, the maximum thrust also increases. However, this does not necessarily increase

the thrust-to-weight ratio since motors and Electric Speed Controllers (ESC) constitute a

significant percentage of the total platform weight. Also, penstocks are confined spaces

making human safety a bigger concern. In case of a crash, a heavy platform may cause

severe damage to the researchers since there is not plenty of space to escape from the robot.

On the other hand, a small platform cannot carry the sensor payload required for autonomy

and visual inspection.

Flight time is another important parameter that needs to be maximized while observing

the other constraints. This is important because, while a typical, medium-sized penstock

is 100 meters long, larger dams have penstocks which are ∼ 300 meters long with steeper

inclinations. An MAV should be able to traverse such challenging penstocks before the

battery voltage drains below a certain threshold. Otherwise, the MAV would lose attitude

since ESCs would saturate at lower input voltages. Finally, we also have to consider the

choice of peripherals such as onboard illumination, first person view video downstream which

21

(a) Ascending Technologies’ Pelican equipped
with an Intel Atom processor, 2D Hokuyo lidar,
an IMU and two LED lights. A 3D printed
mirror mounted on top of the lidar redirects
some of the laser beams upward and downward.

(b) Our Pelican platform flying inside a pen-
stock in Allatoona Dam, GA. In this photo,
the robot is also collecting imagery with a uEye
camera mounted on top of the lidar.

Figure 3.8: Our Pelican platform from different perspectives.

further complicates the platform design.

3.2.2 Pelican

In the earlier phases of experimentation, we used Ascending Technologies’ Pelican platform.

The frame is made of carbon fiber which reduces the total weight of the platform significantly

compared to aluminum or plastic arms. This robot is equipped with a low power 1.6 GHz

Intel Atom processor. The major sensors we used for estimation are an IMU and a Hokuyo

2D lidar (Fig. 3.8). The autopilot runs a proprietary software provided by the manufacturer.

We retrofitted the robot with a 3D printed mirror setup to redirect some of the lidar beams

to the floor and ceiling for altitude measurement. The weight of the platform was 1.8 kg.

and it can fly about 10 minutes with a 3 cell Li-Po battery.

3.2.3 KHex

The second platform we used is KHex designed by KMel Robotics. KHex can fly approx-

imately 8 minutes with a four-cell 4500 mAh Li-Po battery and a total payload of 2.6

kilograms. Fig. 3.9a shows KHex platform equipped with an Intel i7 board, two Hokuyo

UST20-LX lidars and four XGA resolution grayscale BlueFox cameras. KHex is equipped

with redundant sensors in order to reduce the risk of sensor related failures and collect

22

(a) The hex-rotor platform equipped with an
Intel i7 computer, IMU, two Hokuyo UST20-
LX lidars and four Bluefox XGA cameras. This
design uses eight 10 W LEDs placed around
the cameras to provide onboard illumination.
KHex weighs 2.6 kg and can fly about 8 minutes
with a four-cell 4500 mAh battery.

(b) The Camera-LED setup. We use eight
Cree power-LEDs to provide onboard illumina-
tion for imagery collection and visual odome-
try. Each LED is 10 W and has 5000 K color
temperature.

Figure 3.9: KHex platform and onboard illumination setup.

detailed panoramic imagery from inside the penstock.

In our previous platform, Pelican, we retrofitted the robot with a mirror setup to redirect

some of the lidar rays to the floor and the ceiling to measure the altitude. However puddles,

continuous water drainage and wet surfaces often fail the altitude measurements. This

problem is solved by mounting a second 2D lidar tilted downwards to measure the elevation

as illustrated in Fig. 3.10a.

KHex runs KMel’s proprietary onboard attitude estimator. After gravity correction, roll

and pitch angle estimates exhibit low drift and noise. The two lidars send data through

two separate Ethernet ports at 20 Hz and each has a 270 degrees span. Landing gears and

booms only partially occlude the view of the bottom lidar. However this does not affect the

overall performance of the onboard estimator since the FOV of the two lidars overlap along

the occluded region.

The four cameras are used both for visual odometry (VO) and imagery collection for offline

visual inspection. At the time we built this platform, high speed USB-3 global shutter

23

(a) Two 2D Hokuyo lidars. (b) Four BlueFox cameras -
side view.

(c) Four BlueFox cameras -
back view.

Figure 3.10: KHex platform and drawings showing the sensor placement from different
perspectives.

cameras were not available yet. Hence, the bandwidth limit of USB-2 imposes a constraint

on the maximum frame rate. Because of this, KHex could not run all cameras at full speed.

The schematic showing the sensor placement and the preferred robot orientation during

flight is shown in Fig. 3.10. In order to obtain sufficiently bright and textured images for

both inspection and VO, we equipped the robot with power LEDs (Fig. 3.9b). This removes

the requirement of external illumination and reduces the labor requirement significantly.

3.2.4 DJI Hexrotor

After its release, we replaced the 2D lidars with a Velodyne Puck 3D lidar. In order to carry

the extra 800 grams payload, we upgraded our platform to a larger hex-rotor MAV. We built

two platforms with DJI Flame Wheel F550 frame with stock arms and extended arms. These

two versions use DJI E310 and DJI E600 propulsion systems respectively. Since the former

propeller-motor combination (Fig. 3.11a) did not provide sufficient thrust, we continued

with the latter, larger platform (Fig. 3.11b). The thrust to weight ratio of this platform is

∼2. Its total weight is ∼4.5 kg when equipped with a Velodyne Puck LITE, a Pixhawk

autopilot, a 5th generation Intel i7 NUC board, a 6S 5000mAh 50C LiPo battery and a

custom-designed power distribution board. The robot also carries four Chameleon3 1.3MP

USB-3 color cameras and high-power Cree XHP-50 LEDs for onboard illumination and

imagery collection (Fig. 3.11). The total flight time is more than 12 minutes depending on

24

(a) DJI platform with shorter stock arms and
E310 propulsion system.

(b) DJI platform with extended arms and E600
propulsion system.

Figure 3.11: Two iterations of the DJI platform during experimentation inside Center Hill
Dam, TN.

the aggression level. This platform is larger in diameter than our previous designs primarily

due to larger 12′′ DJI E600 propellers.

25

Chapter 4

Localization and Control Using a

Single 2D Lidar

In this chapter, we present our first estimator design based on a single 2D lidar and an IMU.

Our purpose is to enable a computationally constrained Pelican MAV (Sec. 3.2.2) fly semi-

autonomously inside long featureless tunnels. Due to the limited information from a single

2D lidar, we only focus on localization assuming that the map of the tunnel is provided

in a parametric form which can be converted into a point cloud or a mesh. The proposed

method uses a Rao-Blackwellized Particle Filter (RBPF) with the particles modeling the

position uncertainty along the tunnel axis and an Unscented Kalman Filter (UKF) tracking

the remaining degrees of freedom. The measurement update is based on an efficient ICP

derivative with outlier rejection. Except for when the robot is close to the terminals of the

tunnel or there is significant change in the tunnel profile, the position estimate is uncertain

along the tunnel axis. Hence, we assume an operator manually controls the robot pitch

throughout most of the flight.

Details presented in the chapter are based on our previous study at [111]. To our knowledge,

this is the very first study in the robotics literature focusing on localization and autonomous

control of an MAV in 3D, featureless tunnel-like environments. We present results from

26

experiments in Carters and Allatoona Dams, GA and university building corridors showing

that the proposed method operates robustly in different settings.

4.1 Map and Frame Definitions

Penstocks we experimented inside consist of cylindrical and conical sections with no or

slight bends. Hence, each such penstock segment can be approximated by simple parametric

mathematical structures. Parameters defined for the two end points of a given section can

be used to obtain intermediate points by linear interpolation.

4.1.1 Map as a List of Joints

We define a joint, J , as an aggregate structure consisting of a position, a radius and a flag

to determine whether it is blocked or not. This can be written as J := {r, ρ, β} where

r ∈ R3, ρ ∈ R and β ∈ {true, false}. The last parameter, β, is set true for the end joints

of a penstock if it is blocked by a gate. An ordered list of joints approximates a cylindrical

tunnel which we represent as M := {J0, J1, ...Jn}. The line segments formed by connecting

the positions of adjacent joints form the center line, χ, of a tunnel. The circular contour

swept along the center line gives the surface of the tunnel which we convert into a mesh or

a point cloud depending on the requirements of the process that consumes this structure.

Furthermore by simply changing the definition of the contour represented by the joints,

one can approximate the map of a building corridor or another axisymmetric tunnel-like

structure. Depending on the context, M may refer to either of the list of joints, the point

cloud or the mesh obtained from the list of joints. We present a point cloud approximation

to a penstock in Fig. 4.1.

We parametrize the center line such that χ := R → R3 where χ(s) = χ(0) +
∫ s

0
χ(σ)
dσ dσ. χ(s)

maps a given scalar, s, uniquely to a point along the tunnel axis for s ∈ [0, smax] where smax is

the length of the center line. The inverse function is defined as χ−1(r) = argmin
s
||χ(s)− r||

2

where ||·||
2
is the L2 norm. Although χ is a function, its inverse may not always uniquely

27

Figure 4.1: A sample tunnel reconstruction from a set of ordered joints. Each joint has a
associated 3D position and a radius. The junctions at the terminals are marked as blocked
to simulate gates or other blockages. The map is represented as a point cloud.

map a given 3D point to a scalar. Depending on the curvature, radius and query point,

χ−1 may yield multiple solutions. We assume that among the possible solutions one can be

unambiguously chosen from the context (i.e. robot state).

4.1.2 Reference Frame Definitions

A reference frame is defined by an orthonormal triplet of basis vectors and an origin, i.e.

F := {x̂, ŷ, ẑ,O}. Using the parameterization explained in the previous section, we can

define two local coordinate systems for each point along the tunnel axis. These two frames

are depicted in Fig. 4.2. One of these frames is aligned with the center line tangent and the

other is with the gravity vector.

We prefer defining multiple local frames to simplify the formulation of the pose estimation

and filtering as well as control and path following as will be explained in the subsequent

sections. We designate these two frames with A(s) and G(s) where the former is used

to represent the robot position and the latter for its orientation. Both reference frames

are functions of their axial positions (i.e. their position along the centerline). The common

origin of both reference frames is defined to be at the center line, i.e. A(s)O = G(s)O = χ(s).

28

Figure 4.2: An illustration of the three coordinate frames which are the body (B), local
map (A) and gravity (G) frames. These figures show the relation between these frames with
the robot state is fixed. The difference between the local map and the gravity frames is a
rotation around the common y axis.

A(s) is oriented such that it is aligned with the cross-section of the tunnel at the frame origin.

This can be attained simply by defining its basis vectors as

A(s)x̂ ‖
dχ(s)

ds

A(s)ŷ ‖ A(s)x̂ × g

A(s)ẑ ‖ A(s)x̂ ×A(s)ŷ

where g is the gravity vector, each basis vector is normalized and the binary operator · ‖ ·

implies the two vectors are parallel. Orientation of G(s) is obtained simply by rotating A(s)

around A(s)ŷ such that G(s)ẑ = −g (Fig. 4.2). The benefits of using these two frames will

be explained in the following sections. Lastly, we define the map frame asM := G(s = 0).

In the following sections we will omit the axial position parameter with reference frames for

clarity.

4.2 Filtering-Based Localization

Estimating the robot pose with respect to a global reference frame is impossible since the

experiment sites are both GPS and compass-denied. Furthermore estimation using only

range sensors with respect to a fixed world frame is also impossible due to the shape of the

29

(a) An illustration of a robot flying along a hor-
izontal section of a long tunnel. Since the max-
imum range of the laser scanner is less than
the distance to the start of the inclination, the
robot is unable to localize itself with respect
to a global reference frame using solely the on-
board range sensor.

(b) An illustration of a robot flying along an
inclined section of a tunnel. Since the verti-
cal field of view of the laser scanner is small,
the robot cannot measure where the inclination
ends. This prohibits the robot from localizing
itself along the tunnel axis using only a range
sensor.

(c) An illustration of three robots flying in a
hypothetical toric shaped tunnel. Due to the
shape of the tunnel, all the robot take the exact
same measurements using their onboard range
sensors. Hence, the true position of a robot
cannot be inferred in such an environment us-
ing only range sensors.

Figure 4.3: Three illustrations explaining the three limiting cases where a range-based esti-
mator cannot localize a robot inside a axisymmetric tunnel.

30

tunnel. This can be understood by observing the following three cases.

1. Long tunnel : If the tunnel is longer than the maximum sensing range of the laser

scanner, the robot cannot estimate its position along the tunnel axis (Fig. 4.3a)

2. Inclined tunnel : This case is similar to the long tunnel case. Furthermore, if the

field of view of the range sensor is narrow, the robot cannot measure its distance to

where the tunnel bends (Fig. 4.3b)

3. Torus tunnel : Even if the field of view and the range of the range sensor are

sufficient, the range measurements are not informative since the robot would get the

same measurements everywhere in the tunnel (Fig. 4.3c-3.7).

In the following sections we define the robot pose and design the filter based upon these

observation.

4.2.1 Robot State

The featureless, long tunnel geometry renders the position along the tunnel axis unobservable

to a range sensor as explained in the previous section. For this reason we prefer separating

the unobservable and observable states of the robot and also design our estimator and

controller accordingly. The robot state is defined as

x := [s, ry,z,Ω,vy,z,ba,bω]> (4.1)

where s is the position along the center line, ry,z and vy,z are the y and z coordinates

of the position and velocity defined in A(s), Ω is the orientation defined in G(s), ba and

bω are the accelerometer and gyroscope biases given in the IMU frame, I. Ω := {φ, θ, ψ}

is the Euler angles in XYZ order which can be written in matrix form as G(s)RB(s) =

Rz(xψ)Ry(xθ)Rx(xφ) where xφ,xθ,xψ are the roll, pitch and yaw angles respectively, and

Ri(γ) is the rotation matrix around axis i by γ radians. All degrees of freedom except for

s is observable to the range sensor and the IMU. We will refer to s as the axial position.

31

Lastly, we assume that the IMU and body frames coincide and will use interchangeably, i.e.

I ≡ B.

A Discussion on Reference Frame Choices

Defining the robot position, xy,z and velocity xẏ,ż in frame A(s) has multiple benefits. The

position of the robot inM for a given state can be written as

xMr = χ(s) +MRA(s)

 0

xy,z

 . (4.2)

Here, with the abuse of notation, xr ∈ R3 refers to the complete position of the robot. The

robot position as defined in the original state space can be recovered by first projecting xMr

onto the tunnel center line as

s = χ−1(xMr). (4.3)

We assume that either there is a single solution or we can infer the right one from the

context, i.e. the most recent robot state. Then the remaining unknown position variables

can be found as

x
A(s)
r = A(s)RM

(
xMr − χ(s)

)
. (4.4)

Due to how χ−1 is defined, x
A(s)
x = 0 always holds. It should be noted that any reference

frame that has one of its basis vectors tangent to the center line supports this property up

to a permutation.

Let’s consider the same operations assuming G(s) is used for the robot position. Then the

transformation

x
G(s)
r = G(s)RM

(
x
M(s)
r − χ(s)

)
(4.5)

32

Figure 4.4: This figure illustrates the local and gravity frames along with the robot position
written in these frames. Note that the origin of a frame is the point closest to the robot
along the center line. xx = 0 always holds in the local frame case due to how the frame
origin is chosen. This equality holds for a gravity frame only if the center line is horizontal.

would result in x
G(s)
x 6= 0 iff G(s)RA(s) 6= I. The given inequality holds when the tunnel is

inclined. This case is depicted in Fig. 4.4. As a result, for the given χ and χ−1, the robot

position can be recovered after switching between such two reference frames only with a

local frame which is aligned with the center line tangent, such as A.

The second benefit in defining the robot position in A(s) is related to navigation and path

planing. In a typical inspection scenario, the robot must traverse the tunnel at a fixed

distance from either the center line or the tunnel surface. When the proposed reference

frame definition for the robot position is used, this can be achieved simply by fixing xy,z to

a constant or a value which is a function of the axial position and local radius respectively.

However, in case G(s) were used, the distance to the center line would change according to

the variations in the tunnel inclination along the robot’s path. These two cases are depicted

in Fig. 4.5.

Robot orientation is represented in G(s) rather than A(s) due to similar considerations as

for the robot position. Due to the dynamics of multi-rotor aerial vehicles, the orientation

33

Figure 4.5: This figure shows the position of a robot at two different sections of the tunnel.
In between these two states the robot is commanded to follow a trajectory with xz being
constant. When the inclination changes, in order to keep xz constant (orange lines), the
distance of the robot from the centerline adjusts accordingly. This is not a desired effect
since in a typical inspection scenario, the robot is commanded to follow a path at a constant
distance from either the centerline or the tunnel walls.

Figure 4.6: This figure illustrates a hovering robot in two different sections of a tunnel.
The robot orientations as written in their corresponding local map frames differ since the
inclinations are different. Hence, the robot orientation is represented in a gravity frame.

34

commands to the onboard auto-pilot must be given with respect to the gravity vector. For

this reason, we represent orientations with respect to G(s) which is aligned with the gravity

vector. Furthermore, as can be seen in Fig. 4.6, the choice of reference frame affects the

robot orientation, xΩ, by a rotation around A(s)ŷ

(
= G(s)ŷ

)
at a given axial position, s.

This implies that two rotations that are numerically equal at different axial positions, si

and sj , represent two different orientations if G(si)RA(si) 6= G(sj)RA(sj). This means that

the robot orientation would be a function of axial position if a reference frame which has

none of its basis vectors aligned with the gravity vector. This is definitely an unnecessary

coupling between state variables.

4.2.2 Rao-Blackwellized Particle Filter

We estimate the robot state using a Rao-Blackwellized Particle Filter (RBPF). A RBPF

estimates a subset of its states using particles and the remaining using a Kalman Filter

(KF). In this particular case, we run a particle filter (PF) for estimating the axial position

of the robot, s, and an Unscented Kalman Filter (UKF) to estimate the remaining state

variables. The overall system design is shown in Fig. 4.7.

Unless the robot is close to the terminals of the tunnel or in a region where the bending profile

significantly differs from the rest of the tunnel, a range sensor cannot provide informative

measurements to estimate xs. Possible scenarios supporting this observation have been

explained in Sec. 4.2. This implies that in such cases uncertainty along the center line is a

widely spread distribution not exhibiting a shape of any closed-form distribution. For this

reason, we use a PF for position estimation along this specific DoF . Each particle also runs

a separate UKF to estimate the rest of the state variables, i.e. position and velocity along

the tunnel cross-section, orientation and IMU biases. In the following sections, we explain

the process and measurement models in detail.

35

Figure 4.7: The estimator based on a Rao-Blackwellized Particle Filter and a PD controller
for autonomous flight in a tunnel of known cross section. A PF with N particles is used
to model the propagation of the axial position and its uncertainty, while a UKF is used to
estimate the remaining states.

4.2.3 Process Model

The part of the robot state tracked by a UKF is

x̌ := [ry,z,Ω,vy,z,ba,bω]> (4.6)

The UKF process model is defined as

x̌t+1 = f(x̌t,ut, ct) (4.7)

where c is the process noise drawn from a zero-mean normal distribution, u is the control

input derived from the raw IMU data. The control input is defined in the IMU frame, I,

and writes as:

u = [a,ω]> (4.8)

36

where a = [ẍ, ÿ, z̈]> is the body acceleration vector, and ω = [p, q, r]> is the body rotational

velocity. The process model implements dynamics of a quadrotor details of which we leave

to [74]. Finally the process model, f (x̌t,ut, ct), writes as



xy,z

xẏ,ż

xΩ

xb


t+1

=



xy,z + xẏ,ż ∆t+ 1
2 P

(
ARI (ua − xba)− ARG g

)
∆t2

xẏ,ż + P
(
ARI (ua − xba)− ARG g

)
∆t

rpy
(
R(xΩ)

(
I + (uω − xbω)×∆t

))
xb


t

+ ct (4.9)

where ∆t is the control input update period, the function R(·) gives the rotation matrix

corresponding to the given Euler angles, rpy(·) outputs the Euler angles corresponding to

the input rotation matrix, n× is the skew-symmetric written as

n× =


0 −n2 n1

n2 0 −n0

−n1 n0 0

 (4.10)

with the subscripts being zero-based indices, g is the gravity vector and lastly P = [02×1, I2×2].

It is also obvious that R(xΩ) = GRB. Finally, we note that for each particle the frames for

which the rotation matrices defined are dependent on the corresponding axial position, xs.

4.2.4 Measurement Model

The measurement from range-based position and yaw estimation algorithm (Sec. 4.3) is

z = [xy,z, xψ]> (4.11)

where the position estimates are given in the local frame A(xs) for a given particle.

The measurement model is linear which writes as

zt = Hx̌t + mt (4.12)

37

where H extracts the robot position along the tunnel cross-section at a given axial position,

xs, as well as its yaw. mt is the additive noise modeled as a zero-mean normal distribution.

The matrix H is defined as

H =


1 0

0 1

0 0

03×2

0

0

1

03×8

 (4.13)

4.3 2D Laser Processing

The onboard 2D laser scanner provides data as an ordered array of range measurements

which in its raw form is not very useful. The general approach is to convert range measure-

ments to a point cloud to perform scan registration, mapping etc. This, however, causes

information loss since the invalid measurements which may be due to non-reflective surfaces,

or ranges longer than the sensor maximum range are not copied into the point cloud at all.

To illustrate, lack of a return for a particular laser beam means that the space along the

beam direction is unoccupied up to the sensor maximum range. Obviously, this is a valid

statement if we are sure that the environment does not contain objects made of materials

that completely absorb the laser beams. In order to overcome this shortcoming of the point

cloud data type, we propose using a laser image which is the counterpart of a camera image.

We define a laser image, I, as an ordered, enumerable, fixed-sized list of equally-sized pixels.

In particular, for a 2D laser scanner, these pixels are positioned along a circle centered at

the sensor origin. A pixel is defined as p := {p̂, ρ} where p̂ is the unit 3-vector representing

its orientation in the sensor frame and ρ is inverse its range. This representation allows for

encoding the two special states of a pixel, which occur if a pixel is out of FOV of the sensor

or when the range measurement saturates. These two pixel states are represented simply by

setting the inverse range component of a pixel to NaN - not-a-number, and 0 respectively.

With the abuse of notation, when a pixel is used in an algebraic expression we intend its

corresponding 3-vector which is p̂
ρ . A careful reader should notice the similarity between

38

Figure 4.8: This figure illustrates the reference orientation with respect to which the robot
yaw angle, xψ, is defined. Since the robot yaw angle is defined with respect to the center line
tangent, independent of the changes in the tunnel shape, the robot can follow a trajectory
with constant yaw.

pixel representation and the homogeneous coordinates of the projective space. Finally, a

laser image is a set of pixels, I := {p}, defined by its resolution, i.e. the number of pixels,

|{p}|. A given pixel, pi, spans the range 2π
|{p}| [i, i + 1) radians where i is the zero-based

pixel coordinate. Modeling a 2D laser scanner in this way prevents information loss while

preserving sensor layout.

4.3.1 Yaw Estimation

The onboard attitude estimator provides roll and pitch estimates with gravity correction.

On the contrary, the yaw angle, xψ, drifts unboundedly due to lack of a global reference

frame. This problem could have been overcome using a magnetometer, however the metal

tunnel prohibits this. Instead, we correct the yaw angle with respect to the tunnel local axis

using the onboard laser scanner (Fig. 4.8)

We propose a geometric solution to the yaw estimation problem using the fact that the

intersection of a cylinder and a plane is always an ellipse. It is easy to see that the intersection

of a plane and a cylinder can result in three different curves which are a circle, an ellipse

or two parallel lines. This curve is a circle only when Ax̂ ‖ Bẑ which is very unlikely to

39

happen in our case. Other two cases are more likely to be observed and both can be treated

as ellipses since two parallel lines correspond to the special case of an ellipse with infinite

major axis length. The orientation of the major axis of the ellipse is negative the yaw angle

up to π radians ambiguity.

We define xψ = 0 to be the orientation where Aŷ ⊥ Bx̂. Due to the shape of the tunnel,

there is no cue using which a range-based estimator could distinguish whether xψ = ψ0 or

xψ = ψ0 + π. This is because in both cases the laser contours are exactly the same. The

ambiguity is resolved by each UKF comparing its most recent yaw estimate to these two

alternatives and choosing the closest at the measurement update.

We use the method proposed in [16] which studies ellipse fitting as a linear least-squares

problem. The equation of a conic is

F (q,d) = q · d (4.14)

= ax2 + bxy + cy2 + dx+ ey + f = 0 (4.15)

where q = [a, b, c, d, e, f]> are the conic parameters and d =
[
x2, xy, y2, x, y, 1

]>. F (q,d)

evaluates to the algebraic distance of a given point [x, y]> to the conic defined by q. [16]

constrains the conic parameters such that b2 − 4ac < 0 to guarantee that they represent an

ellipse. Since F (q,d) = 0 can be scaled, this constraint can be converted into an equality

as q>Cq = 1 where

C =



0 0 2

0 −1 0

2 0 0

03×3

03×3 03×3


. (4.16)

The method minimizes the sum of algebraic distances of each point to a given ellipse which

can be written as ‖Dq‖2 where D = [d1,d2, ...,dN]>. The constraint is incorporated into

the problem through a Lagrange multiplier. This equation is then differentiated to get the

40

following system of equations

D>D− λCq = 0 (4.17)

q>Cq = 1. (4.18)

This is a generalized eigenvalue problem which we solve using the Eigen C++ library [72].

The eigenvector corresponding to the only negative eigenvalue is the ellipse parameters.

In its original form, the ellipse equation is not very useful since neither the orientation nor

the center of the ellipse are obvious. This equation can be rewritten as

r>

 a b/2

b/2 a

 r +

d
e


>

r + f = 0. (4.19)

where r = [x, y]>. In order to find the orientation of the ellipse we first apply eigenvalue

decomposition on the 2 × 2 matrix. The eigenvector corresponding to the larger of the

two eigenvalues corresponds to the major axis. We define the orientation of an ellipse with

its major axis with π radians of ambiguity. The center of the ellipse is obtained by first

differentiating the above equation with respect to r, and then solving for the free variable.

The ellipse center is found as

ro =
1

2

 a b/2

b/2 a


−1 d

e

 . (4.20)

As seen in Fig. 4.9, laser data may be noisy due to unmodeled obstacles in the environment,

inherent noise in the laser scanner or sensor failures such as due to reflective surfaces. A

direct fit to raw data is very likely to yield to wrong estimates which may result in complete

failure of the estimator and crash the robot. In order to mitigate this problem, we remove

the outliers using the robust estimator MLESAC [14].

Most of the studies in the literature prefer RANSAC [5] which is a proven robust estimator.

The problem with RANSAC is that a data point is penalized only if it is at a distance to the

41

Figure 4.9: A sample laser scan data. The ellipse is fit using the method in [16]. In order
to eliminate outliers, we use MLESAC [14]. Outliers are due to operators walking next to
the MAV, noise and lidar failures.

model greater than a fixed threshold. This brings up the question of what a good threshold

is. Setting the threshold too high may result in poor performance while setting this too small

would flag most good data points as outliers. On the other hand, MLESAC [14] defines a

cost for each data point which when summed gives a likelihood for a given model parameter

set. By simply choosing the parameter set which yields the highest likelihood will perform

at least as good as RANSAC. We leave the details of the MLESAC algorithm to the original

work [14].

4.3.2 An ICP Algorithm for Position Estimation

In this section we propose an ICP algorithm which uses a minimal set of laser points to

estimate the vertical and lateral positions of the platform along the cross-section of the

tunnel (i.e. the Aŷ − Aẑ plane) at a given axial position, xs. Due to the axisymmetric

shape of the tunnel, it is theoretically impossible to estimate the roll angle using only range

sensors. The same applies to pitch angle since the robot is not aware of the tunnel inclination.

For this, our estimator relies on the IMU measurements for roll and pitch angle estimation

which affects the range-based localization.

The onboard 2D Hokuyo laser scanner has ∼ 210 degrees of FOV on the Bx̂ − Bŷ plane. A

3D printed dual-mirror mount is fixed on top of the laser scanner to reflect rays in upward

42

Figure 4.10: Starting from an initial pose, an ICP iteratively refines xAy,z to reduce discrep-
ancy between the actual range measurements and the rays cast against the map. This figure
shows the process on a tunnel cross-section which can be at either a horizontal or inclined
section.

and downward (±Bẑ) directions [68] (Fig. 3.8a). These measurements together with the

orientation estimate and the knowledge of the map are used to localize the robot on the

Aŷ −Aẑ plane of the tunnel using a derivative of the ICP algorithm.

In order to attain real time performance, we first convert the raw measurements into a laser

image and use only a subset of its pixels. We define the effective FOV of the laser scanner

as the intersection of its original FOV and two cones. These cones have fixed apex angles,

their apexes at the sensor origin and are oriented along ±Aŷ directions. It should be noted

that the intersection of a cone with the laser scanner FOV may be empty if the apex angle

is small or the platform orientation about Gx̂ is large (i.e. large roll angle). The intersection

of the sensor FOV and the cones can be easily found by iterating over all the pixels of the

laser image and marking the range component of the pixels that fall outside both cones with

NaN as discussed previously. The beams that are reflected by the two mirrors are also

converted into a laser image. This image has only two pixels with their centers pointing

along ±Bẑ directions. Since the number of pixels is already low, we do not apply any filters

on the second laser image. We call the two laser images as Il := {pl} and Iv := {pv} where

superscripts refer to lateral and vertical, pα,i is the ith pixel of the corresponding laser

43

image.

The closest point on the map to a range measurements is found by casting a ray against

the occupancy grid map, M , along the measurement direction emanating from the sensor

origin. We call the resultant set of vectors as {p̃}. All pixels of the two laser images are

matched to map points in this way. We then iteratively update the robot position on the

tunnel cross-section to reduce the discrepancy between the measurement and the cast rays.

Since this method localizes the robot only along the cross-section of the tunnel, the residuals

due each measurement is projected onto the Aŷ −Aẑ plane. The residual can be calculated

as

ri =
(
I− x̂ x̂>

)
(pi − p̃i) (4.21)

where all vectors are in A(xs). The measurement uncertainty is the covariance of the

residuals calculated after convergence. Algo. 1 explains this method. Also a snapshot of this

procedure is illustrated in Fig. 4.10. Finally, due to the convexity of the tunnel cross-section,

44

this algorithm is guaranteed to converge.

Algorithm 1: Iterative Closest Point for Localization on ŷA − ẑA

Data: [x, {pl} , {pv} ,M]

Result: [xy,z,Σy,z]

/* residual projection matrix */

P⇐ [02×1, I2×2]
(
I−A(xs)x̂ A(xs)x̂

>
)

/* merge the two pixel sets */

{p} ⇐ {pl} ∪ {pv}

/* transform measurements from B to A */

foreach pi ∈ {p} do
pi ⇐ A(xs)RB(x) pi

end

δy,z ⇐∞

while iter < itermax ∧ ε < ||δy,z||
2

do

δy,z ⇐ 02×1

Σy,z ⇐ 02×2

n⇐ 0 /* number of successful ray-casts */

foreach pi ∈ {p} with pi,ρ 6= NaN do

/* ray_cast(origin, direction, occupancy grid map) */

p̃i ⇐ ray_cast (B(xs)O, pi,M) − B(x)O

if ray-casting successful then

n⇐ n + 1

δ = P (pi − p̃i)

δy,z ⇐ δy,z + δ

Σy, z ⇐ Σy, z + δδ>

end

if n = 0 then

break

δy,z ⇐ 1
nδy,z

xy,z ⇐ xy,z + δy,z

Σy, z ⇐ 1
nΣy, z

end 45

4.4 Particle Weighing and Resampling

The objective of a PF is to represent a continuous distribution with a set of discrete samples.

These samples, i.e. particles, are composed of a state and a weight. Normally, the weights

of all particles should be equal if sufficiently many of them could be sampled. However, for

practical concerns, an approximation to this effect is achieved by sampling a finite, compu-

tationally tractable number of particles with weights proportional to their state likelihoods

[119]. In our case, the weight of a particle is proportional to the likelihood of the laser

scanner measurements at its state for the given map.

4.4.1 Particle Weighing

The PF estimates the axial position, xs, of the robot which is a non-negative scalar upper-

bounded by the length of the tunnel centerline, i.e. xs ∈ [0, smax]. Each particle is assigned

a weight according to two factors. One of these factors is the covariance of the ICP algorithm

explained in the previous section. Since the inclination changes along the tunnel axis, and

the sections of the tunnel might have different radii as well as bending profiles, residual

errors in the ICP algorithm yield to be higher for particles sampled at sections of the tunnel

dissimilar to where to robot actually is. Secondly, we evaluate the likelihood of the laser

beams that are aligned with the tunnel axis. This set of beams (i.e. laser image pixels)

are obtained by filtering the original laser image with a cone pair centered at the sensor

origin, oriented along ±Gx̂(xs), and a certain apex angle. These beams see through the

tunnel and provide the most information especially if the robot is flying along a horizontal

section and sufficiently close to one end of it. If the robot is at a distant from the end of

a horizontal section closer than the maximum range of the laser scanner, the robot can be

localized accurately. Furthermore, lack of measurements also provides valuable information

which basically means that the robot is far from end of all horizontal sections. The laser

image data structure makes such queries possible since it stores the saturated measurements

as well as other successful ones. Similar considerations apply to cases where the robot flies

46

along an inclined section.

The weight, w, of a given particle is calculated by incorporating information from the two

factors as

− log(w) =
√
tr (Σy,z) +

1

|{p}|

|{p}|∑
j

L(pj ,x,M) (4.22)

where {p} is the set of laser image pixels after filtering as explained above and |{p}| is

its cardinality, L(p,x,M) is the negative log-likelihood of a single measurement which is

defined as

L(p,x,M) =



0 pρ = 0, p̃ρ = 0

Lmin pρ 6= 0, p̃ρ = 0

Lmin pρ = 0, p̃ρ 6= 0

γ
∣∣p−1
ρ − p̃−1

ρ

∣∣ otherwise

(4.23)

where p̃ is the supposed laser measurement (as a laser pixel) obtained by casting a ray from

the particle state, x, against the map, M , pρ is its inverse range and γ ∈ R+.

4.4.2 Particle Resampling

The two basic steps of a PF are the particle propagation and the particle weight computation.

Typically, the particle propagation step applies the process model onto each particle [10].

In our case, the process model is identity for xs since there is no higher order terms such

as axial velocity that will accumulate on this over time or coupling with the other state

variables. The weight computation step is already considered in the previous section. A

general problem of PFs is degeneracy which happens when a subset of particles have zero

weight, or a few particles have much larger weights such that the rest of the particles have

no effect. When only these two steps are applied, degeneracy is, in most cases, inevitable.

This problem is solved with resampling the particles according to their weights, which is

called the importance resampling [119].

47

There are various approaches to the resampling problem which is covered in detail in the

survey paper [119]. In this work we employ the systematic resampling approach due to its

lower CPU demand. This method divides the interval (0, 1] into N disjoint equal subinter-

vals. Only a single random value in
(
0, 1

N

]
from a uniform distribution is sampled and the

remaining N − 1 values are obtained deterministically as

u0 ∼ U
(

0,
1

N

]
(4.24)

un = u0 +
n

N
, n = 1, ..., N − 1. (4.25)

Algo. 2 provides a pseudo code of this approach.

Algorithm 2: Systematic Particle Resampling
Data: [{x, w}]

Result: [{x̃}]

{Q} = cumulativeSum ({w}) /* find the cumulative sum of the particle weights */

n⇐ 0 /* count the processed number of particles */

m⇐ 0 /* book-keep the bin in the cumulative dist. */

/* the only random value sampling from a uniform dist. */

u0 ⇐ sampleUniform
(
0, 1

N

)
/* loop until N particles are resampled */

while n < N do

u⇐ u0 + n
N

/* find the bin that u falls inside */

while Qm < u do

m⇐ m+ 1

end

n⇐ n+ 1

x̃n ⇐ xm

end

48

4.5 Experimental Results

In this section we present and interpret results of our experimental work. Dataset were

collected in three different sites: Carters Dam, GA and the Allatoona Dam, GA, and in a

long university building hallway.

In Fig. 4.11-4.12-4.13 we give results for our Allatoona Dam, Carters Dam and university

building experiments respectively. These experiments show that quadrotors programmed

to fly semi-autonomous should be considered as the preferred platform for inspection of

tunnel-like environments. Only with a laser scanner and an IMU robust localization and

control along the tunnel cross-section can be performed in real-time. Lastly, when a tunnel

terminal is within the range of the onboard laser scanner, localization along the tunnel axis

is achieved as well.

In our initial visit to Carters Dam, we collected two datasets flying the robot manually.

In the first flight the platform traversed along only the horizontal section of a penstock.

The second dataset was collected while the robot flew close to the junction region and also

into the inclined section. Since the human operator could not climb along the inclination

due to steep inclination, wet and slippery surface, the operator could not follow the robot

which prohibited flying the robot further along the inclined section. We processed these first

datasets offline to assess the quality of our estimator. Results for these dataset are shown

in Fig. 4.11

In our field tests at Allatoona Dam, GA, we flew the robot in semi-autonomous mode

where the position along the tunnel cross-section and the heading are commanded through

a radio control by a human operator. These high level commands given by the operator were

executed by the low level onboard controllers. The operator also controls the acceleration

along the center line direction by adjusting the pitch angle. These semi-autonomous flight

tests prove accuracy and stability of our estimator. Unlike a ground robot, flaws in the

controller or estimator would cause instabilities and cause the robot to crash. Results for

these dataset are shown in Fig. 4.12

49

In Fig. 4.12b at the 40th second, increase in the covariance is due to a researcher walking near

by the quadrotor. However, the estimator could handle this case and position estimate was

not affected significantly. In Fig. 4.11b-4.13a, the covariance increases during the periods

when the robot is away from the tunnel/corridor terminal with the following exceptions. In

Fig. 4.11b around the 160th second increase in uncertainty is because of sensor failure due

to water drainage behaving as a mirror. Lastly the increase in variance in Fig. 4.13a around

the 100th − 120th and 160th seconds is because the quadrotor pitched such that the laser

scanner could only see the floor. In this case the marble floor tilings fail the laser scanner

due to the mirror effect.

We conducted a third experiment in a building at the University of Pennsylvania, along

a ∼42 meters long corridor where the quadrotor flies semi-autonomously. In the corridor

experiment, although there are geometric features such as pillars and doors, the point cloud

map is a featureless rectangular prism. So there is no feature in our map that would help in

estimating position along the center line. Indeed, those features behave like noise for yaw

estimation which shows robustness of our estimator.

50

(a) Experiment #1 at Carters Dam, GA.

(b) Experiment #1 at Carters Dam, GA.

(c) Experiment #2 at Carters Dam, GA.

(d) Experiment #2 at Carters Dam, GA.

Figure 4.11: These figures show robot position estimates along with their respective inflated
covariances. y and z positions are with respect to the local center line. Unlike the tests
at Allatoona Dam (Fig. 4.12), the tunnel walls were not wet and reflective, hence we could
collect a good dataset close to the junction. Fig. 4.11b clearly shows the period that the
robot is localized along the center line. This period is longer in Fig. 4.11d since the robot
flies close to the junction. Localization fails in high covariance regions for both tests.

51

(a) Experiment #1 at Allatoona Dam, GA.

(b) Experiment #2 at Allatoona Dam, GA.

Figure 4.12: These figures show position estimates of xAy,z along with their respective in-
flated covariances. In these experiments, the platform flies semi-autonomously. Due to wet,
reflective surfaces, laser scanner failed to take measurements along the center line direction.
Hence we cannot estimate position along the tunnel axis. Failure in the dataset #2 at the
40th second is due to occlusion.

52

(a) Experiment in a university building corridor.

(b) Experiment in university building.

Figure 4.13: These figures show results for tests carried in a corridor of length ∼42
meters in a building at University of Pennsylvania. 3D position estimates along with
their inflated covariances are presented. Videos of this experiment can be found at:
http://mrsl.grasp.upenn.edu/tolga/FSR2013.mp4

53

Chapter 5

State Estimation Using a

Heterogeneous Sensor Suit

In this chapter we study the state estimation problem inside a tunnel using the KHex

platform (Sec. 3.2.3) equipped with a richer set of sensors. The onboard sensor suite includes

two 2D Hokuyo lidars, four BlueFox XGA grayscale cameras one of which is used for velocity

estimation along the tunnel axis and an IMU. One of the lidars is tilted downwards to

measure the altitude in addition to contributing to the lateral position and orientation

estimation. The tilted lidar replaces the dual-mirror mount of the Pelican platform to

provide more reliable and richer measurements for altitude estimation. Since the tunnel

inclination changes, this laser is tilted in such a way that at all sections of the tunnel it sees

the tunnel floor at a small angle of incidence on the average.

Similar to the approach of the previous chapter we assume that a parametric map of the

environment is provided. Hence, this chapter studies the localization problem as well rather

than the SLAM problem. The most significant improvement over the previous approach is

the velocity estimation along the tunnel axis which in turn enables the full state estimation

using a similar filtering mechanism. Briefly, information from all the sensors are fed into

a central UKF to estimate the 5 DoF robot state as well as its axial velocity. We present

54

results from experiments in Carters Dam, GA and Glen Canyon Dam, AZ for range-based

estimation and visual odometry. This chapter is based on our previous work at [127].

5.1 A Discussion on The Requirement of a Prior Map

Two 2D laser scanners with fixed relative poses theoretically provide sufficient information

for fitting a cylinder. This could have been used to eliminate the requirement for a prior

map. A cylinder can be defined by 5 parameters which are its radius (1), normalized axis

(2) and plane-intercept of its axis (2). While only 5 points are sufficient to fit a cylinder,

there are 6 possible solutions with only an even number them being real (i.e. non-complex)

cylinders [49]. Therefore, multiplicity of the solutions prohibits direct application of a 5-

point approach to a robotics application with real-time performance requirements. This

situation can be remedied through employing a filtering mechanism that chooses among the

possible solutions provided that certain priors are available. Another alternative is to run the

5-point algorithm for multiple point tuples and choose the similar solutions from each run.

Although it is beyond the scope of this work, it can be easily shown that slight perturbations

of point positions cause significant changes in some of the solutions reducing the likelihood

of obtaining multiple common solutions from multiple runs. Regardless, algebraic methods

such as [49], [124] cannot be directly used to solve the cylinder fitting problem in a robotics

scenarios since these family of methods assume absolute point accuracy.

The robotics community has produced works that can handle noise in the point cloud data

such as [21], [34], [98], [112]. However these methods assume a dense point cloud is provided.

To illustrate [98] fits cylinders to a point cloud reconstruction of a piping system which

consists of several millions of points. Since this approach relies on surface normals for

tracking pipe directions, it cannot be applied to our case. Likewise, [112] approximates the

skeleton of a piping system from a point cloud map consisting of several millions of points.

Due to these reasons and our safety concerns pertaining to stability issues, we assume, for

this work, that the map of the tunnel is provided, and leave online cylindrical map estimation

using 2D laser scanners as a future work.

55

5.2 Nomenclature and Definitions

This work assumes that a map of the tunnel is given parametrically which can be converted

into a mesh or a point cloud similar to the previous chapter. In particular, the map is

converted into an occupancy grid with the cell size of 5 cm.

Since the sensor suit includes multiple range sensors and cameras, each is given a unique

name to prevent ambiguity. The frames of the two laser scanners are denoted as Lb and Lt

where the subscripts b and t refer to bottom and top respectively. As explained in Sec. 3.2.3,

the cameras are oriented to the right, left, top and bottom of the platform with respect to the

body frame. We refer to the reference frames of each camera as Cr, Cl, Ct and Cb respectively.

The IMU frame is denoted as I which we assume to be coincident with the body frame, B.

The relative pose of a sensor, Sa, with respect to another sensor or the robot body, Sb, is

given with the rotation matrix and the translation vector pair as
{
SbRSa , O

Sb
Sa

}
where the

first element of the tuple is the rotation from Sa frame to Sb frame, and the second element

is the origin of Sa with respect to Sb origin.

Data structure of both sensors are modeled as a set of pixels similar to the previous chapter.

Camera and laser scanner pixels are geometrically equivalent hence using the same mathe-

matical pixel structure facilitates the formulations. The properties that are not common to

both pixel types are the color and the intensity values of camera and laser scanner pixels

respectively, however these are not used by the proposed estimation methods. We discrimi-

nate between pixels from different sensor by a proper notation such as
{
pCi

}
, i ∈ {r, l, t, b}

and
{
pLi

}
, i ∈ {t, b} which refer to a camera and a laser image respectively.

5.3 Sensor Fusion for State Estimation

This section explains the system and filter designs as well as the measurement models for

the two exteroceptive sensors. The state estimator introduced in the previous chapter is

improved by a vision-based velocity estimator complementing the range sensors to give a

56

Figure 5.1: This figure shows processes in a data flow diagram. Inputs to the system are the
IMU, lidar and camera measurements, and the map of the tunnel. Partial pose estimates
from the range-based localizer and the visual odometry are fused by the UKF node. The
operator gives way-point commands using an RC to the trajectory generator output of which
is fed to the onboard PD controller.

full state estimation. The frequency of the estimator is determined by the sensor rates.

The UKF prediction step runs at the 100 Hz IMU rate, and the range and vision-based

measurement updates run at 40 Hz and 24 Hz respectively.

The robot lateral position and yaw angle are estimated through a robust iterative closest

point algorithm that runs on the two laser scanners. The most recent filtered robot state

is fed to the vision-based estimator as its initialization point. The velocity estimate is then

fed back to the UKF to update the robot axial position.

In Fig. 5.1 we show the data flow diagram with each box corresponding to a process. The

inputs to the system are the map, M , IMU data, frames from the right camera and range

measurements from the two lidars. The UKF node outputs 6 DoF pose estimate which is

fed to a PD controller. The operator gives way-point commands to the trajectory generator

using a remote control. Finally, the onboard PD controller generates low-level controller

commands in accordance with the pose estimate and the trajectory.

On this platform, only one of the four cameras is used during flight tests since the USB 2

57

bandwidth is not enough to grab frames from all the four cameras at high frame rates. We

also collected additional datasets with all the four cameras active to grab images from the

four sides of the robot which we then use to form 360 degrees image panoramas as will be

explained in the subsequent sections. These images can later be used to facilitate locating

cracks and rusty spots by the maintenance engineers.

5.3.1 Robot State

We adopt the state definition of the previous chapter with the addition of position and speed

along the tunnel axis and bias terms for roll and pitch which writes

x := [s, ṡ, ry,z,Ω,vy,z,bφ,θ,ba,bω]> (5.1)

where s and ṡ are the position and speed along the center line, ry,z and vy,z are the y and

z coordinates of the position and velocity defined in A(s), Ω := {φ, θ, ψ} is the orientation

defined in G(s), bφ,θ is the roll and pitch biases of the onboard attitude estimator, ba and bω

are the accelerometer and gyroscope biases given in the IMU frame, I. Ω is the Euler angles

in XYZ order which can be written in matrix form as G(s)RB(s) = Rz(xψ)Ry(xθ)Rx(xφ)

where xφ,xθ,xψ are the roll, pitch and yaw angles respectively, and Ri(γ) is the rotation

matrix around axis i by γ radians. The axial speed, ṡ, is observable to the vision-based

estimator and all other state variables except of the axial position, s, are observable to the

range sensor and the IMU. The axial position, s, is obtained by integrating the axial speed

over time.

5.3.2 Process Model

The UKF process model is defined as

xt+1 = f(xt,ut, ct) (5.2)

58

where the definitions of the arguments are the same as the process model of the previous

chapter (Equ. 4.9). With the addition of the full velocity estimate, the process model is

updated as



xs

xṡ

xy,z

xẏ,ż

xΩ

xb


t+1

=



xs + xṡ ∆t

xṡ

xy,z + xẏ,ż ∆t+ 1
2 P

(
ARI (ua − xba)− ARG g

)
∆t2

xẏ,ż + P
(
ARI (ua − xba)− ARG g

)
∆t

rpy
(
R(xΩ)

(
I + (uω − xbω)×∆t

))
xb


t

+ ct (5.3)

where xb refers to all three bias terms.

5.3.3 Fusing Multiple Sensory Information

The proposed filter performs separate measurement updates for the IMU, the laser scanners

and the camera since each sensor runs at a different rate. The thermally calibrated IMU and

the proprietary onboard controller of the KHex platform provides accurate roll and pitch

estimates with gravity correction. In order to benefit from the onboard attitude estimate

(implementation and calibration details of which is unavailable), our UKF implements a

measurement update for the roll and pitch angles at a reduced frequency of 20 Hz. An IMU

measurement is defined as

zI = [φ, θ]> (5.4)

where both angles are given in the IMU frame, I, which is coincident with the body frame,

B. The measurement from the range-based localization algorithm (Sec. 5.4) is defined as

zL = [y, z, ψ]> (5.5)

59

where the position estimates are given in the local frame A(xs). Lastly, the vision-based

axial speed measurement is defined as

zC = ṡ. (5.6)

The measurement models for each sensor are linear which write as

zIt = HI xt + mIt (5.7)

zLt = HL xt + mLt (5.8)

zCt = HC xt + mCt (5.9)

where the matrices are, respectively, defined as

HI = [02×4, I2×2, 02×11] (5.10)

HL =

03×2

1 0

0 1

0 0

03×2

0

0

1

03×10

 (5.11)

HC = [0, 1, 01×15] (5.12)

mIt , mLt and mCt are the additive noise modeled as a zero-mean normal distribution.

5.4 Range-Based Partial State Estimation

This section gives the details of the range-based estimation algorithm which aligns the

robot with respect to its current local frame derived from the map, M , and the current

axial position of the robot, xs. Secondly, an uncertainty estimate of the partial state is also

derived which is a requirement of the filtering framework. The proposed algorithm employs

multiple sensors with their extrinsic calibrations defined with respect to the body frame

which coincides with the IMU frame. This is because the onboard attitude controller expects

60

the commands in the IMU frame. The extrinsic calibration of each lidar is represented by

rotation-translation pairs, i.e.
{BRLt ,OBLt} and

{
BRLb ,OBLb

}
for the top and the bottom

laser scanners respectively. Fig. 3.10 illustrates the sensor configuration.

The raw range readings from each laser scanner are first converted into two laser images

(Sec. 4.3). Indefinite measurements and rays with ranges larger than 6m are filtered out

at the preprocessing stage before being fed into the ICP algorithm. The latter filter is

important since it reduces the effect of noisy measurements in the yaw estimation (xψ)

which in tightly coupled with the lateral position estimation (xy,z). Details of this behavior

is explained in the iterative least squares formulation. Furthermore, converting the dense

range measurements to a laser image also both smooths out noise and downsamples the data

hence saves CPU time.

5.4.1 Iterative Least-Squares Formulation

The proposed ICP algorithm performs data association by projecting each laser beam onto

the grid map, M , and assigning the first hit voxel center to the corresponding beam. In

other words, we define the closest map point to be the voxel center closest to the beam

origin that intersects with the laser beam represented as

Vi,Lj = π
(
x, pLj ,i,M

)
= argmin
Vk∈M , t∈R+

(∣∣∣∣∣∣OMLj + t p̂Mi,Lj − Vk
∣∣∣∣∣∣

2

)
(5.13)

x is the state vector, j ∈ {t, b}, pi,Lj is the ith pixel of the laser image from laser scanner

Lj , M is the 3D occupancy grid approximation of the map, ||·||
2
is the L2 norm and

OMLj = χ(xs) +MRA(xs)


 0

xy,z

+ A(xs)RB OBLj

 (5.14)

p̂Mi,Lj = MRA(xs)
A(xs)RB

BRLj p̂i,Lj (5.15)

61

Figure 5.2: This schematic depicts the parameters and vectors explained in Equ. 5.13-5.35.
The bright stars represent the closest voxels among possible other that each pixel intersects.

are the sensor origin and pixel orientation both in the map frame. Fig. 5.2 depicts these

parameters and vectors in a schematic.

Having the data association defined, we formulate the problem as an iterative weighted least

squares problem without regularization written as WAx = Wb where

x = [cos (∆xψ) , sin (∆xψ) , ∆xy]
T , (5.16)

W is the diagonal weight matrix, A is an N × 3 matrix and b is an N vector where N

is the total number of data points from both of the lidars. We exclude the roll and pitch

angles from the solver assuming that the UKF estimates these accurately. Indeed, due to the

symmetric tunnel geometry, absolute roll and pitch angles cannot be measured with range

62

sensors. A and b are defined as

pMi,Lj = OMLj +
1

ρi,Lj
p̂Mi,Lj (5.17)

An =



 0 1 0

−1 0 0

 pMi,Lj


>

, 1

 (5.18)

bn =
(
Vi,Lj

)
y
− xy (5.19)

(5.20)

where the subscript n refers to the nth row of the tensor and there is a one-to-one corre-

spondence between each pixel from both sensors and tensor row indices. Each data point

is assigned a weight such that Wn,n = wn as a function of the alignment error εn. These

parameters are defined as

εn = pMi,Lj − Vi,Lj (5.21)

wn = e
−||εn||γ

2 (5.22)

where we choose γ = 3. This way, correspondences with large initial residuals are penalized

more and lose their contribution to the least squares solution. Finally the partial solution

becomes

x = (A>WA)−1A>Wb (5.23)

therefore

∆xy = x3 (5.24)

∆xψ = atan2(x∗2, x
∗
1). (5.25)

Since x2 and x1 might not be valid cosine and sine values, we clamp them to the [−1, 1]

inclusive range which is denoted by ·∗.

63

The above formulation solves only for xy and xψ simultaneously because of their strong

coupling. Whereas, due to the geometry of M and the way we formulate the least squares

solution, xz and xψ do not correlate significantly. xz is mostly a function of the ranges from

the bottom lidar. For each iteration of the pose refinement we define the xz update as

∆xz = − 1

N


N∑
n=1

(εn)z exp


∣∣∣ (pMi,Lj)z ∣∣∣∣∣∣∣∣∣pMi,Lj ∣∣∣∣∣∣

2

− 1


 . (5.26)

5.4.2 Uncertainty Estimation

Censi [53] models the 2D scan registration and its uncertainty estimation problems based on

a polygonal environment assumption. This approach reduces the infinite dimensional map

into a finite space. The unknown polygon is approximated by connecting ray tips of the

sub-sampled scan data which is a fair heuristic with modern, accurate laser scanners. [53]

approaches the uncertainty estimation problem from an information theoretic point of view

and uses the Fisher information to calculate this. In particular, Cramer-Rao bound-like

inequalities are used to statistically bound the pose covariance from below. A lower bound

for the pose uncertainty is proven to be the inverse Fischer Information Matrix (FIM). In

this work, we employ the same approach with improvements in the environment model for

estimating the uncertainty in the partial state estimate given by the proposed ICP algorithm.

The information carried by each range measurement is summed to give the Fisher informa-

tion of a single laser scan. The symmetric 3× 3 FIM as defined in the source sensor frame

is calculated as

I (Lj) =

|{pLj}|∑
i=0

1

σ2 cos2(βi)

a(αi)a(αi)
> 1

ρi
sin(βi)a(αi)

∗ 1
ρ2i

sin2(βi)

 (5.27)

σ2 is the variance of the additive Gaussian noise of each range measurement which we assume

to be the same for each beam. The dependency of FIM on the environment geometry is

encoded through the following variables: αi is the surface (line) normal direction in the

64

Figure 5.3: Sample laser scanner contour from inside a penstock at Carters Dam, GA. The
two straight segments are from the walls of the tunnel. Since the laser scanner cannot see
the end of the tunnel, contour interrupts (circled). A FIM is estimated as proposed in [53]
separately for each segment and summed to give the measurement covariance.

sensor frame that the ith ray intersects, a(αi) = [cos(αi), sin(αi)]
> and βi is the angle of

incidence of the ith ray with respect to the surface it intersects, i.e. the angle between the

ray and the surface normal directions.

As shown in Fig. 5.3 assuming a single polygonal environment does not work for certain

cases. For this reason, we first segment the scan into clusters according to the discrepancy

between consecutive readings and represent the environment with multiple polygons. FIM

is estimated for each polygon separately which are then summed to give a more accurate

covariance estimate. The FIM for each laser scanner is defined as

I (Lj) =


Ix,x Ix,y Ix,ψ

Iy,x Iy,y Iy,ψ

Iψ,x Iψ,y Iψ,ψ

 . (5.28)

written in the given laser frame hence each such information matrix should be transformed

into a common frame before being summed.

Information from multiple lidars is merged by transforming each FIM into the body frame,

B. A FIM after transformation is denoted as I (Lj)B. The upper-left 2 × 2 block, i.e. the

translational components, denoted as I (Lj)Ljx,y, can be transformed simply by multiplying

65

with proper rotation matrices. We expand this block to a 3× 3 matrix for compatibility by

appending the information for the z dimension which is 0. The FIM after transformation

writes

I (Lj)Bx,y,z = BRLj

I (Lj)Ljx,y 02×1

01×2 0

 LjRB. (5.29)

Angular uncertainties however are not easy to project, and finding a solution for this is

beyond the concerns of this work. Therefore we approximate IBψ,ψ as

I (Lj)Bψ,ψ =
∣∣∣ (MRLj

)
(3,3)

∣∣∣ I (Lj)
Lj
ψ,ψ (5.30)

where ·(3,3) is the bottom-right element of the rotation matrix and it is a measure of how

much the laser scanner is tilted with respect to the target frame. The off-diagonal elements

for the ψ information are ignored which does not affect the performance of the estimator

significantly.

The measurement uncertainty of the ICP is approximated as the inverse of the total infor-

mation from both laser and is written as

Σ (L)Bx,y,z =
(
I (Lt)Bx,y,z + I (Lb)Bx,y,z

)−1
(5.31)

Σ (L)Bψ =
(
I (Lt)Bψ + I (Lb)Bψ

)−1
. (5.32)

Equ. 5.5 requires the position measurements to be given in the local axis frame. This

conversion can be performed as

Σ (L)A(xs)
y,z = P

(
A(xs)RB

) (
Σ (L)Bx,y,z

) (BRA(xs)

)
P> (5.33)

P = [02×1, I2×2] . (5.34)

66

5.5 Vision-Based Axial Speed Estimation

This section gives the details of the visual odometry (VO) algorithm that we employ for

estimating the axial speed of the robot. By integrating over time, axial speed can be used to

estimate the only unknown state variable, the axial position, xs. Secondly, an uncertainty

estimate of the axial speed is also provided which is a requirement of the filtering framework.

The two other major topics of this section are the image enhancement and panoramic image

generation for offline inspection purposes.

The proposed algorithm is explained assuming only one of the cameras is active. However,

this method can easily be adapted to multi-camera scenarios by simply redefining the cor-

responding measurement model of the Kalman filter. The major reason for using a single

camera although the platform is equipped with four, is lack of sufficient bandwidth to grab

frames from all cameras at sufficiently high frame-rates. On the other hand, the panoramic

image generation algorithm stitches all four images collected in a separate experiment where

the robot was flown with only the range-based estimation active.

Similar to the previous section, the extrinsic calibration of each camera is represented by

rotation-translation pairs, i.e.
{BRCi ,OBCi} where i ∈ {r, l, t, b}. Fig. 3.10 illustrates the

sensor configuration.

5.5.1 Full State vs Axial Speed Estimation

The rest of this section details the image enhancement, feature extraction, tracking and,

finally, axial speed estimation steps. Each step of the estimation pipeline introduces errors

into the process such as inaccurate image feature coordinates and tracking. The perfor-

mance of imagers in low light settings available at the development time of the approach

explained in this chapter was a limiting factor affecting the image quality, hence the whole

visual odometry pipeline. The errors inevitably introduced at each step of the proposed

pipeline is amplified in proportion to the performance of the onboard cameras in low light

67

conditions. Output of each step of the pipeline shown in Fig. 5.5 suffices to prove the severity

of the situation. This raises concerns about the reliability of cameras as a major source of

measurement for a state estimation framework deployed on a MAV flying inside a confined

penstock setting. On the other hand, laser scanners are not affected by the adverse and

challenging conditions in penstocks. Due to these concerns, the approach presented in this

chapter prefers using laser scanners as the major source of information for state estimation,

and uses cameras only in the estimation of just a single degree of freedom, i.e. axial speed,

failure in accurate estimation of which does not result in catastrophic failure of the state

estimation.

On the other hand, a platform equipped with more powerful onboard illumination and cam-

eras with better performance in low light conditions can be deployed with an estimator that

relies more on visual information. In particular, a loosely-coupled range-visual odometry

framework which adaptively fuses information from both type of sensors depending on the

image quality could perform better than the proposed method. Open source visual odome-

try frameworks such as [106], [107], [121] could be used for this purpose. Also, performance

of these can be enhanced when used in combination with range sensors since depth of pix-

els/features that overlap with the field of view of laser scanners can be estimated without

any latency.

5.5.2 Image Enhancement

The accuracy of the proposed VO method heavily depends on the quality of the onboard

illumination since there is no external illumination in a typical penstock. As shown in

Fig. 5.4 the images have very low contrast and weak texture. In our tests, none of the feature

extraction implementations of the OpenCV library such as FAST, Harris and Shi-Tomasi

[51], [62] could find any features or they fail persistence. Furthermore, the nonuniform

lighting pattern such as concentric brightness rings and lens flare generate artificial intensity

gradient which adversely affects both feature extraction and tracking performance. We

overcome these problems by applying a set of image filters as shown in Fig. 5.5 to amplify

68

(a) An image grabbed using one of the side
cameras. The white blades are the pro-
pellers partially occluding the camera view.
The white line at the bottom-right corner is
painted for manual ground truth comparison
(Sec. 5.8). Note that this image is rotated by
90 degrees.

(b) An image grabbed by the top camera.
The white line is the welding seam line. Since
the robot is flying below the center line level,
the LED fall short in illuminating the ceiling
sufficiently resulting in a dark, low contrast
image.

Figure 5.4: These two frames grabbed using the onboard cameras show the typical level of
image detail.

the weak texture and suppress the effect of intensity pattern artifacts.

In order to enhance the contrast we apply histogram equalization followed by Gaussian

smoothing to suppress local abrupt changes introduced by stretching the image histogram.

The resultant image has higher contrast hence stronger gradients which is a necessity for

robust feature extraction and tracking. Then we perform adaptive thresholding on this

image with a Gaussian kernel. A pixel is set white if its intensity is greater than the

weighted average of its neighboring pixels. This methods outputs a binary image (Fig. 5.6).

An interesting property of this binary image is that white pixels adhere to each other and

form small blobs which persist for a couple of frames. These blobs define small hills and

the black regions form valleys around that these which Kanade-Lucas-Tomasi (KLT) tracker

[20] can easily track. Sample binary frames and raw images with optical flow fields overlaid

are shown in Fig. 5.7. The binary image exhibits this behavior due to the speckled tunnel

surface caused by rust formation, peeled-off surface coating, rivets and irregular painting.

Despite the short blob adhesion periods of just a couple of frames, sufficient optical flow

field density is attained thanks to the new blobs forming at every frame. In some cases, only

a small subset of the image exhibit sufficient blob quality and persistence. This happens

69

Figure 5.5: This figure shows the output of the image processing pipeline at each step
and the resultant optical flow field from our visit to Carters Dam, GA. At the top-left
is the raw image. This is a pale image with almost no significant texture. In order to
amplify the texture gradient, we used histogram equalization as shown on the top-right.
Next, an adaptive threshold is applied to get a black-white image as in the bottom-left.
FAST features and KLT tracker are used to extract and track features on this image.
The bottom-right image shows the tracked feature points and their corresponding opti-
cal flow trails after initial outlier elimination. The corresponding video can be found at
http://mrsl.grasp.upenn.edu/tolga/iros2016/

when the tunnel surface is clean, the coating is uniform and well maintained. In such cases,

we set the region of interest to image patches with higher average brightness to increase the

effect of histogram equalization.

5.5.3 Feature Extraction and Tracking

The spatial distribution of the feature points extracted from the final image shape according

to the saliency of the image regions. This in turn results in clustering of the features around

high texture regions which is not preferable since this would cause singularity in the pose

estimation. This effect can be mitigated by means of a method called bucketing [11], [73].

70

http://mrsl.grasp.upenn.edu/tolga/iros2016/

Figure 5.6: This figure shows consecutive binary images obtained after the adaptive thresh-
olding stage of the image processing pipeline. It can be observed that the effect of irregular
illumination is partially recovered. Due to the low resolution of the images, it is difficult
for a human to track blobs across frames. However a few blobs due to scratches and spots
preserve their shapes which can be easily observed. The KLT tracker can track even the
smaller blobs for 3-5 frames which is sufficient for VO.

The image is divided into nonoverlapping rectangular patches and the maximum number

of features in each bucket is limited. In this way, the resultant feature point set is more

uniformly distributed over the whole image

Among the benefits of this approach is the reduction in the number of features while keeping

the most salient ones. This helps reducing the CPU load which is a requirement for real-

time performance. Secondly, a uniformly distributed set of features can capture the actual

optical flow field much better compared to the case where feature points are clustered around

a relatively small, high texture image region. Lastly, the adverse effect of intensity artifacts

due to nonuniform illumination is mitigated. Without bucketing, a feature detector would

extract most features along the artificial intensity gradient.

Due to its efficiency, we use FAST features [75]. The feature extractor maintains a constant

number of features while guaranteeing a certain minimum separation between features. We

keep this value in 3-7 pixels range. Existing features are tracked using the KLT tracker

for temporal data association. We prefer the KLT tracker over descriptor based feature

71

Figure 5.7: Sample binary images and optical flow fields.

72

Figure 5.8: Masks applied to the images captured from the right and left cameras. The
half strips cover the image areas corresponding to the propellers. When the robot is flying
close to the centerline vertically, the side cameras are exposed to specular reflection from
the wet tunnel surfaces which degrades the feature extractor and tracker performance. The
full strips mask out these image regions.

matching approaches since the latter requires descriptor extraction and matching both of

which induce more CPU usage. According to our tests, the former approach performs well

enough for optical flow vectors a few tens of pixels long which is satisfied with moderate

flight speeds (∼ 2 m/s) and camera high frame rates (> 20 fps). History of each feature

position is kept for a certain maximum number of frames which typically ranges between 3

and 7.

The propellers are partially visible to side cameras as shown in Fig. 5.4a. The edges of the

propellers offer high intensity gradient which causes the feature extractor to detect most

features in the corresponding bucket around the propeller edges. In order to prevent this,

we mask the image from the side cameras with masks as shown in Fig. 5.8

We employ three types of outlier rejection procedures. Only the features that are tracked

successfully for more than a given number of frames are used. Secondly, features with optical

flow vectors longer than a threshold are rejected. These usually correspond to cases where

KLT tracker fails to track a feature and ends up in abrupt jumps in the feature location.

The typical threshold is between 30 and 100 pixels depending on the flight speed. Lastly,

we apply an adaptive thresholding on the optical flow vector lengths. The mean flow vector

and its variance are calculated which are then used to eliminate flow vectors that are farther

from this model than a certain number of standard deviations.

73

Figure 5.9: These figures show snapshots from three perspectives of the two-step VO dis-
placement estimation. From left to right are back, right and top views of the tunnel along the
inclined section. The robot poses are denoted as rotation-translation pairs (Ri, Ti) i ∈ {1, 2}.
Grey shades represent the pose uncertainty. The red dots are the back-projected feature
points. The range-based localizer can only provide lateral and vertical position estimates.
The missing DoF is estimated using VO.

5.6 Visual Odometry

Position measurement using a laser scanner is, in most cases, much more reliable and ac-

curate compared to a camera since vision-based position estimation is possible only after

observing a scene for multiple frames while moving along a path that lends to sufficient

parallax. Furthermore, a visual odometry pipeline involves highly non-linear optimization

procedures or linearization of systems of equations which when not implemented robustly

or fed with inaccurate or faulty measurements may diverge and fail catastrophically. Partic-

ular to our case, provision of reliable measurements to the VO pipeline is maybe the most

fragile component due to factors such as low texture surfaces, insufficient illumination and

occlusion by dust particles and mist which degrade the image quality. Pursuant to safety

concerns in the confined penstock environment, we designed the VO pipeline to estimate

only the axial speed and rely on the partial state estimates from the laser scanners as its

initialization point.

The epipolar constraint [15] provides a mathematical relation for estimating relative orien-

tation and translation direction using solely 2D image features. Successive application of

this method along with estimating the 3D positions of the landmarks corresponding to the

image features is central to most VO systems [32], [33], [83]. In case 3D position estimates

74

of the landmarks are available, the unknown translational scale can also be recovered using

the family of Perspective-n-Point (PnP) algorithms [27]. The knowledge of pixel metric

depth facilitates the pose estimation problem making it less sensitive to inaccurate measure-

ments. In this work, we adopt the latter approach since a partial state estimate of the robot

is available which, in combination with the map, can be used to reliably estimate feature

depths.

We estimate the inter-frame displacement along the tunnel axis by analyzing the back-

projection of the tracked features onto M extracted from consecutive frames pairs. This

operation is similar to the ray-casting function π(·) defined for the range-based localizer

with minor modifications to improve accuracy. Features in the 1st and 2nd frames are

referenced by
{
pCj
}1 and

{
pCj
}2 respectively. The 2nd frame is the most recently grabbed

frame and the 1st frame is the previous one. Note that, since laser scanners and cameras

are not working with the same rate, we do not use a common time index. i is the tracked

feature index in the camera with frame Cj where j ∈ {r, t, l, b}. In fact, due to low USB 2

bandwidth, we use only the right camera. The 3D projected point on M for each feature is

found as

Vi,Cj = π
(
x, pi,Cj ,M

)
(5.35)

= argmin
Vk∈M , t∈R+

(∣∣∣∣∣∣OMCj + t p̂Mi,Cj − Vk
∣∣∣∣∣∣

2

)
. (5.36)

The behavior of the π(·) function and the definition of the other variables are similar to those

in Equ. 5.13. As shown in the system architecture (Fig. 5.1), the pose at which the π(·) is

applied is fed from the UKF which is denoted as x. p̂Mi,Cj is the unit vector corresponding

to the image feature written in the map frame as

p̂Mi,Cj = γ MRCj K−1


(
pi,Cj

)
x(

pi,Cj
)
y

1

 (5.37)

which is also depicted in Fig. 5.2. Here γ ∈ R+ is the normalization factor, K is the

75

camera calibration matrix and the top two elements of the 3-vector are the coordinates of

the corresponding image feature.

Since M is a finite resolution occupancy grid, two back-projected feature points at different

but close image coordinates may be matched to the same voxel. Thus, direct use of the

output of the projection function loses the precision required for accurate estimation of the

continuous robot pose. In order to mitigate this problem we fix Vi,Cj as follows

V∗i,Cj =
∣∣∣∣∣∣Vi,Cj −OMCj ∣∣∣∣∣∣

2

p̂Mi,Cj +OMCj . (5.38)

This operation basically fixes the orientation of the corresponding 3D point to that of the

high resolution image feature, i.e. p̂Mi,Cj , and sets the depth of the feature, i.e. ρ−1
i,Cj , to the

distance between the camera origin and the initially matched voxel center, Vi,Cj . Since the

voxel size is small ([3-5] cm) and the tunnel surface is smooth, we assume the change in

the depth of a feature is insignificant after the correction. Fig. 5.9 shows an instance of the

robot from three perspectives with the back-projected rays.

The direction of the motion unobservable to the range-based localizer can be inferred from

the state vector as γ dχ(xs)
dxs

= A(xs)
M
x̂ where γ ∈ R+ is the normalization factor. For brevity,

we will denote this vector as α̂(xs). This motion can be estimated on a frame-by-frame basis

by analyzing the difference between the back-projected vectors of consecutive frames. Each

such vector is defined as

ei,Cj =
(
V∗2i,Cj − V

∗1
i,Cj

)
α̂(xs)

>α̂(xs) (5.39)

where the superscript numbers denote the frames numbers. The set of error vectors is

denoted with the list notation as
{
eCj
}
.

Binarization of the raw images at the preprocessing stage degrades the accuracy and locality

of the features which are listed among the properties of the ideal local feature by [67]. As

seen in Fig. 5.6-5.7, at each frame a random subset of blobs either merge with its neighboring

blobs or split into smaller ones in the next frame. This results in false optical flow vector

76

estimation with the vector norms differing by multiples of a typical blob diameter. The noise

with such characteristics can easily be filtered by a histogram-based filter. A histogram of

the projection errors,
{∣∣∣∣eCj ∣∣∣∣

2

}
, is generated with 5 bins maximum. Features in the highest

percentage bin are regarded as inlier. The axial speed measurement, zC , is estimated as the

mean of the inliers in this bin which is then fed into the UKF. Finally, the measurement

uncertainty is estimated as the variance of the same set of projections errors.

5.7 Panoramic Image Generation

In a typical image processing pipeline for panoramic image generation, features with descrip-

tors are extracted from images which are then used to find an initial alignment of adjacent

images pairs. However, these steps are not required if the relative camera poses and scene

depth is known. In out case, the external calibration of the cameras as well as the relative

pose of the cylindrical structure around the cameras are known thanks to the a prior map

the pose estimate. A panoramic image is obtained simply by back-projecting images from

all cameras onto the surface of the tunnel and then projecting them back onto a hypothetical

cylindrical imager.

A cylindrical imager with square pixels is modeled by its circumferential and axial resolution,

i.e. c × a. The azimuthal FOV (around the axis) of this camera is FOVθ = 360o and its

elevation FOV can be found as

FOVφ = 2 atan
(aπ
c

)
. (5.40)

We assume that the cylindrical images is fixed to the body frame at its origin, BO , and its

axis is aligned with Bx̂. The origins of azimuthal and elevation coordinates are respectively

coincident with Bẑ and the base of the cylinder at its −Bx̂ end. The camera function,

77

Figure 5.10: This figure shows the 360 degrees panoramic image reconstruction obtained
using images from the four onboard cameras. Regions of the panoramic image is labels with
the source camera.

analogous to the camera matrix, is defined as

K(p) =

atan2
(
py,pz

)
px√

p2
y+p2

z

c
2π + a

2

 (5.41)

where p is a 3-vector given in B, and c/2π is the cylinder radius in pixels.

The cylindrical image is constructed by projecting each pixel from all four cameras onto the

cylindrical images surface and blending their intensities with equal alpha values. Depth of

each pixel is estimated as explained in Equ. 5.38. The projection of a real pixel onto the

panoramic image is then calculated as

K
(
ρ−1
i,Cj p̂

B
i,Cj

)
. (5.42)

Fig. 5.10 shows a panoramic image generated using the images grabbed from the four on-

board during the experiments at Glen Canyon Dam. A 3D color point cloud obtained by

back-projecting the raw images onto the tunnel walls is shown in Fig. 5.11.

78

Figure 5.11: These images show 3D color point clouds plotted in RViz obtained by back-
projecting images from the four onboard cameras onto the tunnel walls. The water drainage,
propellers and peeled off coating can be clearly seen.

79

5.8 Experimental Results

In this section we present results from experiments conducted in penstocks at Carters Dam,

GA and Glen Canyon Dam, AZ. Results we present here include estimation results with

ground truth comparisons when possible such as in Fig. 5.14. In particular, at Glen Canyon

Dam, AZ, we marked the walls vertically with spray paint with 2 meters of separation visible

from the camera which we used for ground truth comparison. We collected this dataset while

the robot was flying along the horizontal section as can be seen in Fig. 5.12. The position

estimates along the tunnel axis are manually recorded at instants when the right side camera

sees the markings right at the center of the images. The displacements are then compared

against the ground truth 2 meters separation between markings. The time axis refers to

instants the painted markers are seen right at the center of the right camera. Videos related

to this experiment can be found at http://mrsl.grasp.upenn.edu/tolga/iros2016/

In Fig. 5.13, we show the lateral and vertical position estimates along with their inflated

variances. Throughout the flights we commanded the robot to follow a straight line parallel

to the centerline which can also be observed in these figures. The oscillations in these graphs

are due to non-optimal controller parameter values.

In other three datasets collected in a penstock at Carters Dam, GA, the robot flew along the

inclination. Since the steep inclination prohibits climbing along this section of the tunnel,

we could not follow a similar approach as in the previous case for ground truth comparison.

Instead, we assessed the visual odometry performance by observing scratches on the walls.

Fig. 5.15-5.16 show 3D position estimation results from the Carters Dam experiment. We

particularly focus on the VO results in these figures. In order to assess the performance

of VO, we manually match scratches on the wall at the start and end of each flight, and

also at intermediate locations if possible. In the first experiment (Fig. 5.15) the drift after a

∼ 40 meter flight is less than 1 meter which corresponds to < 2.5% error. In this particular

dataset, we could manually detect loop closured and confirmed that the drift is small also

at intermediate points.

80

http://mrsl.grasp.upenn.edu/tolga/iros2016/

Figure 5.12: A snapshot from the experiments inside a penstock at Glen Canyon Dam,
AZ. The robot is flying fully autonomously using onboard illumination. Also, in Fig. 5.11
and Fig. 5.10, we show the local 3D reconstruction and the 360 degrees panoramic image
generated using the images from the onboard four cameras.

The second dataset (Fig. 5.16a) shows ∼ 7.5 meters of drift at the end of the flight which

is significantly larger compared to the first test. It should be noted that starting at ∼ 65th

second, the axial position estimate oscillates for more than 20 seconds. During this flight,

when the robot reached at the highest elevation (at ∼ 65th second), it started to yaw

randomly which was due a failure in the yaw estimation. The yawing motion in turn induced

large optical flow vectors. However, since the range-based state estimate was not correct,

the rotation-induced optical flow field was not compensated properly which resulted in very

larger axial velocity estimates. Lastly, the results for the third dataset (Fig. 5.16b) are

similar to the first dataset in terms of drift and the estimated trajectory.

81

(a) y − z position estimates from experiment #1.

(b) y − z position estimates from experiment #2.

(c) y − z position estimates from experiment #3.

Figure 5.13: These plots show the lateral and vertical position estimates of the robot along
with their corresponding inflated variances. During these flights, the robot was commanded
to follow a straight path at a constant distant from the centerline. The oscillations are due
to suboptimal onboard controller parameters.

82

(a) Position estimate along the tunnel axis for experiment #1.

(b) Position estimation errors along the tunnel axis for experiment #2.

(c) Position estimate and error along the tunnel axis for experiment #3.

Figure 5.14: These plots compare the VO results with ground truth data on datasets col-
lected in a penstock at Glen Canyon Dam, AZ. The x-axis enumerates the instants that the
markers on the walls are seen at the center of the right camera.

83

(a) A comparison of axial position estimates at the take off position. We deduce that the robot
revisits the same position from the horizontal white scratches circled in green.

(b) The robot is at the ∼ 7th meter from the take off position. The axial position estimates
differ only by a few centimeters.

(c) The robot is at the ∼ 11th meter from the take off position. The axial position estimates
differ only by a few centimeters. Note how lens flare distorts the optical flow field.

Figure 5.15: These figure show 3D position estimation results on a dataset collected along
the inclined section of a penstock at Carters Dam, GA. y− z positions are estimated by the
range-based estimator, and x (axial position) is estimated using visual odometry. The left
and middle images show the flow field overlaid on the camera view. Green circles focus on
the scratches on the wall which we use for manual loop closure. The two blue dots on the
plot show axial position estimates at the loop closure. The drift along the ∼ 40 meter flight
is < 1 meter.

84

(a) In this test, around the 65th second, the yaw estimation failed for a couple of second
causing the robot to oscillate. This motion in turn induced large optical flow vectors. Since the
orientation estimate was wrong, during this period the optical flow field was not compensated
resulting in larger axial velocity estimates.

(b) The drift in the axial position after a ∼ 40 meters of flight is ∼ 2 meters.

Figure 5.16: 3D position estimation results from two experiments at Carters Dam, GA. y−z
positions are estimated by the range-based estimator and x (axial position) is estimated using
visual odometry. Scratches on the tunnel wall that we use to manually detect loop closure
are circled in green.

85

Chapter 6

Local Mapping and Estimation with a

3D Lidar

Lightweight and high scan rate 3D lidars, after very recently becoming available to the

robotics researchers, greatly facilitates robot perception in 3D settings. Prior to these de-

vices, in order a robot to build 3D maps with comparable level of density and also attain

omnidirectional awareness, the onboard 2D laser scanners were required to be retrofitted with

electro-mechanical actuators or the robot had to execute sophisticated path planning algo-

rithms. This chapter describes a state estimation and local mapping approach in penstocks

using the DJI platform equipped with an IMU and a 3D lidar (Sec. 3.2.4). In particular, we

are interested in exploiting the capabilities of the 3D lidar to eliminate the requirement of

a prior map. The only requirement regarding the tunnel geometry is it to be in the shape

of a generalized cylinder.

The proposed approach models the environment with a minimal set of parameters rather

than using a prior point cloud map significantly reducing the memory and CPU required

for representation as well as processing. Our system estimates the local map and the robot

pose in real-time with onboard resources only. Furthermore, obstacles which are often not

modeled in a prior map can be easily detected since comparison of the raw lidar data against

86

the parametric map would reveal these anomalies. This enables us to generate trajectories

with obstacle avoidance offering a safer experimental platform which is of utmost importance

in the confined penstock setting. Since it does not require a prior map and is capable of

detecting unmodeled obstacles, this system is superior compared to those described in the

previous chapters. We demonstrate results from experiments conducted in Center Hill Dam,

TN to show the performance of our estimator and the local mapper. At Center Hill Dam,

TN we reached speeds of more than 3 m/s. Finally, this chapter is based on our previous

work at [131].

6.1 Local Map Representation and Robot State

The local map, L, is represented as a list of cylindrical segments, {S}. A segment is an

aggregate mathematical structure with three components : local frame, L, radius ρ, and

source point cloud, P , i.e. Ss := {Ls, ρs,Ps}. Since each segment, by design, has the same

length, we exclude this from the segment definition. The point cloud component is the

subset of the raw point cloud, P , used to estimate the given segment. A point cloud is a

list of pixels, P := {p}, which we also call a 3D range image. We follow the same pixel

definition as in Sec. 4.3. The segment fitting procedure will be explained in the following

sections.

The robot pose, except for the axial position, xs, is a function of the robot’s immediate

surroundings. Hence the knowledge of only the local map suffices for autonomy. Given this,

the segment inside the convex hull of which the robot currently flies is defined to be the

center segment. This segment is denoted as S0 and is special since it also defines the local

map coordinate frame, i.e. L := L0. The rest of the segments are represented with respect

to this frame.

The local map is re-estimated at each frame using the 3D raw point cloud, and is not

a constant structure unlike the map used in the previous chapters. Hence, each segment

is a function of time, i.e. Ss = Ss(t). However, we drop the time argument for clar-

87

ity. The segments of the local map are indexed with respect to the center segment as

L :=
{
...,S(−2),S(−1),S0,S1,S2, ...

}
. The sign of an index is determined according to the

corresponding segment’s relative position with respect to the center segment which is ob-

tained as sign
(

(L0)>x̂ (Os −O0)
)
. In order to facilitate indexing adjacent segments, we

define the following shorthand notation : the preceding and the succeeding segment indices

are obtained, respectively, as

s− = s− sign (s) (6.1)

s+ = s+ sign (s) (6.2)

for |s| > 0.

We use the same state vector definition as in Chap. 5 which is

x := [s, ṡ, ry,z,Ω,vy,z,bφ,θ,ba,bω]>. (6.3)

Here, the cross-sectional position and velocity, ry,z,vy,z, are defined in the center segment

local frame, L0. The Euler angles, Ω, is written with respect to the gravity frame, G, where

Gẑ = −g and g is the gravity vector. Since the proposed estimator neither tracks a fixed

world frame nor relies on a fixed prior map, the orientation of G around Gẑ is unknown.

However, this is neither a deficiency nor causes ambiguity since a local map is sufficient to

describe the partial state of the robot that the controller and the path planner requires.

Indeed, the gravity frame is fixed such that GO = O0 and G>x̂ (L0)ŷ = 0. The definition of

the rest of the state vector components are the same as in Equ. 5.1.

When the system is first activated, the gravity direction and its magnitude are calibrated

by simply averaging the accelerometer measurements for a certain duration while the robot

is kept stationary. This way the gravity vector is indirectly tracked in the form of the robot

roll and pitch angles. Once this preemptive calibration step is complete, the gravity frame

is defined as explained in the previous paragraph.

88

Figure 6.1: The overall system diagram. The inputs are data from three types of sensors
and the user commands given through the GUI or the radio control. Local Mapper and
Range-Based Pose Est. uses the IMU and 3D point cloud data to generate a local map of
the tunnel and localize the robot within that map. Camera Picker chooses one or more of
the cameras and relays the corresponding frames to the Visual Odometry block. The details
of Visual Odometry is presented in the Chap. 5.

6.2 System Design

The system is composed of several building blocks which include sensory inputs, estimators,

controller and user interface. Fig. 6.1 shows the inputs to the system which are IMU, 3D

point cloud and image data from the onboard sensor suit. Partial state estimates from each

estimator can be fused in a central UKF to estimate the 6 DoF state. Since the details

of a possible sensor fusion algorithm has already been studied in the previous chapter, in

this chapter we are focusing on the 3D local map generation and range-based partial state

estimation. Furthermore, we implemented a shared controller such that the operator can

give high-level way-point commands using the radio control or the GUI application running

on the base station. The onboard controller can override the operator commands in case it

detects a possible collision to prevent crashes caused by the human operator.

6.3 3D Point Cloud Preprocessing

In this work, we use the DJI platform (Sec. 3.2.4) which is equipped with a Velodyne Puck

Lite 3D lidar as its primary exteroceptive sensor. The FOV of this sensor is 360 and 30

degrees in the azimuthal and the elevation directions respectively. Although the horizontal

89

Figure 6.2: A typical point cloud data captured from inside a penstock at Center Hill Dam,
TN. The raw point cloud is subsampled using a voxel filter with a cell size of 5 cm. Since
the point density is small in the elevation direction, this filter affects only the point density
along the azimuthal direction.

FOV lends to omnidirectional awareness with only a single range image, this is not the case

for the vertical direction due to the narrow FOV. This prohibits reconstruction of the robot’s

surroundings directly from a single raw point cloud data. Only through assuming a model

for the tunnel and then estimating its parameters, the environment can be reconstructed

with a single lidar range image. The obvious downside of this approach is that predominance

of discrepancies between the actual environment and the model may fail the downstream

estimator catastrophically. We refer to all the unmodeled objects as obstacles and assume

that the range and FOV of the lidar is sufficient to detect these from a safe distance. This

way, the path planner can prevent the human operator flying the robot closer than a safe

distance.

At the very first stage of the point cloud processing pipeline, the raw point cloud is down-

sampled using a voxel filter with its cell size being in the range of [3− 5] cm. The vertical

resolution of the 3D lidar is 2o/pixel which is much sparser compared to the horizontal

resolution of 0.4o/pixel. Hence the main purpose of the downsampling is to reduce the un-

necessarily high point density along the azimuthal direction. Since the vertical resolution is

already low and the voxel size is small, this filter only reduces the horizontal point density.

Downsampling the point cloud, significantly reduces the compute time and memory usage.

A typical point cloud data collected while the robot was landed is shown in Fig. 6.2

The 100 meters maximum range of the Velodyne 3D lidar is much longer than the longest

90

Figure 6.3: Accurate surface normal estimation is not possible beyond a certain distance
from the sensor origin since the points get prohibitively sparse. For this reason, the voxel
filtered point cloud is trimmed.

line of sight inside the tunnels we experiment. Furthermore, range measurements beyond

a certain distance do not contribute to the state and local map estimation at all since

the Euclidean distance between points corresponding to adjacent lidar pixels grows with

the range and cannot capture the required level of geometric detail. This effect is more

prominent especially along the lidar vertical direction due to the lower resolution. For this

reason, as well as to reduce the CPU load, we filter out the original point cloud to exclude

all the points with ranges longer than a certain threshold which ranges from 5 to 12 meters.

A sample trimmed point cloud data is shown in Fig. 6.3

6.3.1 Surface Normal and Uncertainty Estimation

Surface normal estimation is at the core of the range-based estimation. Surface normals

are used to estimate the axes of local map segments as will be discussed in the subsequent

sections. The axis of a segment is estimated to be the vector which is perpendicular to all

of its surface normals in the least squares sense. Unless otherwise stated, the calculations

below are carried in the Velodyne frame, V.

We define the normal of the point pi, n̂i, as the eigenvector corresponding to the smallest

91

(a) This figure illustrates point cloud data (blue circles) plotted in side-
view. Samples for point position and normal uncertainties are shown in
orange and blue shades. All the points within a certain radial distance
from the lidar are used for fitting the the initial frame, L.

(b) This figure shows the results of two iterations of local frame and segment
estimation. Each frames is fitted using only the points that are inside a
certain volume which are marked with green and blue shades.

Figure 6.4: Algo. 9 illustrated. These figures explain the components of the range-based pose
estimation and the local mapping algorithm. Points farther than r meters from the sensor
are drawn in light-blue and never used in the calculations. The inlier data (blue points) is
denoted by P . Position uncertainties of sample points, formula of which is given in Equ. 6.8,
are overlaid in light-blue. Normal vectors of points are plotted in orange. Uncertainties of
sample normal vectors are also plotted in light-orange formula of which is given in Equ. 6.7.
This figure also illustrates α and A further details for which are provided in Sec. 6.4.1. The
origin of L is coincident with origin of the center segment, O0.

92

Figure 6.5: A sample point cloud data and surface normal estimates. The normals are
estimated to be the eigenvector of the scatter matrix corresponding to its smallest eigenvalue
(Equ. 6.6). The normal directions are fixed according to their relative orientation with
respect to the view port. Although some of tunnel surface normals are pointing outwards,
this does not affect the cylinder fitting process.

eigenvalue of the scatter matrix Spi [76] defined as

{j}pi :=
{
j | ||pj − pi||

2
≤ rn̂

}
(6.4)

µpi =
1∣∣∣{j}pi∣∣∣

∑
j∈{j}pi

pj (6.5)

Spi =
1∣∣∣{j}pi∣∣∣

∑
j∈{j}pi

(pj − µpi)(pj − µpi)> (6.6)

where {j}pi is the set of indices, j, of the points pj which are at most rn̂ distant from pi. For

radius search we use the Kd-tree implementation of the PCL library [82]. Surface normals

on a sample voxel filtered and trimmed point cloud is shown in Fig. 6.5.

We also estimate the uncertainty of n̂i, by propagating the uncertainty of each point as [53]

Σn̂i =

 ∑
j∈{j}pi

∂n̂i
∂pj

(
Σ−1

pj

) ∂n̂i
∂pj

>

−1

(6.7)

93

where Σpj is the uncertainty of point pj . This is found as

Σpi = VRPi ΣPipi
PiRV (6.8)

where ΣPipi is the uncertainty of the corresponding point in the pixel frame, Pi. The pixel

frame relates to lidar frame, V, as

VRPi =


cos(β) cos(α) − cos(β) sin(α) − sin(β)

sin(α) cos(α) 0

sin(β) cos(α) − sin(β) sin(α) cos(β)

 (6.9)

where β and α are the elevation and azimuthal coordinates of pi in lidar frame, V, respec-

tively. The uncertainty of this point is defined in the frame Pi is taken as

ΣPipi =
1

ρi


σ2
r 0 0

0 σ2
α 0

0 0 σ2
β

 (6.10)

where σ2
r , σ

2
α and σ2

β are the uncertainties in the range, azimuthal and elevation angles per

unit range. ΣPipi models the measurement uncertainty to be linearly increasing with the

range of the point. It should be noted that vectors and uncertainty matrices are defined in

the lidar frame, V, unless another frame is explicitly expressed in the equations as stated

earlier.

In order to complete the derivation of normal uncertainty, Σn̂i , we have to determine the

Jacobian ∂n̂i
∂pj

where j ∈ {j}pi . Let λi be the smallest eigenvalue of Spi with its corresponding

eigenvector êi = n̂i. Each column of the partial derivative of n̂i is given as [7]

∂n̂i
∂pj,c

=
1∣∣∣{j}pi∣∣∣ (λiI− Spi)

† ∂Spi

∂pj,c
n̂i (6.11)

(6.12)

where I is the 3×3 identity matrix, ·† is the Moore-Penrose inverse, pi,c is the cth component

94

of pi where c ∈ {x, y, z}. The partial derivatives of the scatter matrix, Spi , for each c are

∂Spi

∂pj,x
=

(pj − µpi)
>

02×3

+

(pj − µpi)
>

02×3


>

∣∣∣{j}pi∣∣∣ (6.13)

∂Spi

∂pj,y
=


01×3

(pj − µpi)
>

01×3

+


01×3

(pj − µpi)
>

01×3


>

∣∣∣{j}pi∣∣∣ (6.14)

∂Spi

∂pj,z
=

 02×3

(pj − µpi)
>

+

 02×3

(pj − µpi)
>


>

∣∣∣{j}pi∣∣∣ . (6.15)

Finally, the Jacobian matrices

∂n̂i
∂pj

=
1∣∣∣{j}pi∣∣∣ (λi I3×3 − Spi)

†

[
∂Spi

∂pj,x
n̂i,

∂Spi

∂pj,y
n̂i,

∂Spi

∂pj,z
n̂i

]
(6.16)

can be plugged into Equ. 6.7 to propagate point uncertainties into normal uncertainties.

This completes the normal vector and its uncertainty estimation.

6.4 Point Cloud Segmentation and Surface Fitting

The narrow FOV of the Velodyne Puck along the elevation dimension (±15 degrees) imposes

a significant constraint on the robot’s ability to sense and model its surroundings. However,

this can be remedied by exploiting the symmetry of the tunnel through estimating the

95

parametric representation of the tunnel surface and extrapolate the raw point cloud data by

that. Fitting cylindrical segments to the point cloud practically provides a 360 degrees of

FOV around the tunnel axis. As opposed to direct point cloud matching algorithms such as

[60], [134], this method does not suffer from data association problems which arise due to

non-overlapping point cloud data across lidar frames. Furthermore, the parametric surface

can also be used to estimate depths of image features with zero latency provided that the

relative calibration of the lidar and the cameras is available.

6.4.1 Local Frame Initialization

The segmentation and mapping process is an iterative algorithm with can be summarized as

initialize-refine-recur until all the points in P are consumed. P is the point cloud obtained

after radius filtering and downsampling applied on the raw data as explained in Sec. 6.3.

The first step is to use the filtered point cloud, P , to initialize a rough, but reliable initial

local coordinate frame. This frame is denoted as L∗ where O∗ = 0 by definition. In order

to define L∗, we first have to estimate the local tunnel axis α̂∗ := L∗x̂, which is found as

the eigenvector corresponding to the smallest eigenvalue of

M = (WN)>(WN) (6.17)

where

N =
[
n̂0, n̂1, ..., n̂|P|−1

]>
(6.18)

W = diag
[
e−(κ0/κτ)2 , e−(κ1/κτ)2 , ..., e−(κ|P|−1/κτ)

2]
. (6.19)

Here κi is the curvature of pi which is defined as the ratio of the smallest eigenvalue of Spi to

their summation [76] and κτ is a constant which we choose to be in the range [0.1, 0.3]. W

assigns smaller weights to points at high curvature regions. Once the local map centerline

tangent is estimated, we can then use the procedure explained in Sec. 4.1.2 to construct the

frame, i.e. L∗ :=
{
L∗x̂,L∗ŷ,L∗ẑ,O∗

}
. This process is explained in Algo. 3 and illustrated

96

Figure 6.6: This figure shows a sample point cloud data and reference frame estimates along
with their corresponding color-coded point cloud segments used in their estimation. The
input point cloud is segmented and to each segment a reference frame is fitted as explained
in Algo. 3-4. The point due to objects and human operators are filtered out from the point
cloud segments as explained in Algo. 5-6.

in Fig. 6.4. Also a sample output with reference frames and the point cloud segments used

for their estimation are shown in Fig. 6.6

6.4.2 Segment Initialization

Segment initialization is handled differently for the cases s = 0 and |s| > 0. S0 is initialized

as L0 = L∗ and O0 = O∗. Ps is defined as

Ps :=

{
pi | pi ∈ P ,

∥∥pLsi,x∥∥ ≤ `

2

}
(6.20)

where

pLsi,x = [1, 0, 0] LsRV (pi −Os) . (6.21)

97

Algorithm 3: estimateLocalFrame
Data: [{S}] /* point scatter matrices */

Result: [L]
/* Construct the least-squares system */

for i = 0; i < |{S}| ; i++ do
/* get the eigenvalues of the scatter matrix in ascending order */

{λ} ⇐ evals (Si)
/* get the eigenvector corresponding to the smallest eigenvalue */

Ni ⇐ minevec (Si)
>

/* approximate the curvature */

κ⇐ λ0∑
j λj

/* construct the weigh matrix */

Wi,i ⇐ e−(κ/κτ)2

end
/* find the local map axis */

Lx̂ ⇐ minevec
(
(WN)>(WN)

)
/* construct the local map frame as explained in Sec.

4.1.2 */

L ⇐ constructFrame (Lx̂)

Algorithm 4: segmentPointCloud
Data: [P ,L]

Result:
[
P̃
]

/* retrieve the origin of the local frame */

[O]⇐ L
/* initialize the output point cloud */

P̃ ⇐ ∅
foreach pi ∈ P do

/* transform the point from lidar frame to local map frame */

pLi ⇐ LRV(pi −O)
/* check if the point is within the radius threshold */

if
∣∣∣pLi,x∣∣∣ ≤ `/2 then
/* add the point into the output point cloud */

P̃ ⇐ P̃
⋃
pi

end

98

For other cases, |s| ≥ 1, the coordinate frame is initialized as

Ls = Ls− (6.22)

Os = Os− + sign (s) ` (Ls−)x̂. (6.23)

Ps can be obtained the same way as P 0 through proper coordinate frame substitution in

Equ. 6.20. Point cloud segmentation is also explained in Algo. 4 and illustrated in Fig. .

6.4b. In our tests, we choose ` to be in the range of [0.10− 2] meters.

6.4.3 Segment Refinement

The segment initialization is followed by parameter refinement and outlier rejection. These

steps are recursed to obtain Ss and S(−s) in pairs where the sign denotes the forward and

backward direction with respect to the tunnel axis. The process continues until all the points

in P are either segmented into tunnel sections or marked as outliers.

The quality of segment initialization is dependent on the estimation quality of the previous

segment, S(s−), as well as the noise level of sensor data which is not guaranteed for certain

cases. For this reason, initialization is followed by refining the point set, Ps, as well as

the coordinate frame definitions, Ls −Os, through outlier rejection and refitting the model

iteratively until convergence. The two assumptions we use for outlier detection are the

agreement of local surface normals, n̂i, with the local tunnel axis, (Ls)x̂, and the cylindrical

surface model. The former assumption eliminates points with incompatible surface normals

to obtain more accurate local frames and the latter removes regions of the point cloud that

do not comply with the cylindrical surface assumption due to objects such as scaffolding

and human operators. The two methods are given in Algo. 5 and Algo. 6 respectively.

Outlier rejection based on the surface normal assumes that each normal, is perpendicular

to the local tunnel axis. This condition is written as

∣∣∣n̂>i (Ls)x̂

∣∣∣ < τn̂. (6.24)

99

Algorithm 5: outlierEliminationNormals
Data: [S]
Result: [S , n]
/* retrieve the components of the input segment */

[P ,L,O]⇐ S
/* count the number of removed points */

n⇐ 0
for i = 0 ; i < |P | ; i++ do

/* remove points not compliant with the centerline tangent */

if
∣∣n̂>i α̂∣∣ < τn̂ then
P ⇐ P \ pi
n++

end

Algorithm 6: outlierEliminationRadius
Data: [S]
Result: [S , n]
/* retrieve the components of the input segment */

[P ,L,O, ρ]⇐ S
/* count the number of removed points */

n⇐ 0
for i = 0 ; i < |P | ; i++ do

/* transform the point from lidar frame to local map frame */

p = LRV (pi −O)
/* remove points far from annulus */

if
∣∣∣∣1− ||py,z ||2ρ

∣∣∣∣ ≥ τρ then

P = P \ p
end

100

We choose τn̂ in the range of [0.1, 0.25]. Both the surface normal compliance assumption

and the low weight assigned to high curvature regions (Algo. 3) for tunnel axis estimation,

increases the robustness of the local frame estimates.

Algorithm 7: fitModel

Data: [S]
Result: [Oc, ρ]
/* retrieve the components of the input segment */

[P ,L,O]⇐ S
/* initialize solver */

A⇐ ∅
b⇐ ∅
for i = 0 ; i < |P | ; i++ do

p = LRV (pi −O)

Ai ⇐
[
p>y,z, 1

]>
bi ⇐ −||py,z||2

2

end
f ⇐ A†b
/* calculate the model center w.r.t. local map frame */

Oc ⇐ −1
2

[
0, f>1,2

]>
ρ⇐

√
||f1,2||2

2
16 − f3

As explained in Sec. 6.1, a segment is assumed to be cylindric with a fixed length, `. We

use the points in Ps to fit a cylindrical model assuming that the tunnel has a parametric

cross-section which is circle in this case. In order to simplify the model fitting problem,

we use the fact that, for a reasonably well estimated local frame Ls, the projection of the

points in Ps onto the local cross-sectional plane formed by (Ls)ŷ− (Ls)ẑ forms a circle. The

parameter estimation then can be formulated as a linear regression written as

Ai =

[(
pLsi

)>
y,z
, 1

]
(6.25)

bi = −
∣∣∣∣∣∣∣∣(pLsi)y,z

∣∣∣∣∣∣∣∣2
2

(6.26)

f = A†b (6.27)

where Ai and bi select the ith row of the corresponding tensor,
(
pLsi

)
y,z

is the y, z coordi-

nates of the given point in the local map frame, Ls, f is a 3-vector and ·† is the Moore-Penrose

101

Algorithm 8: refineSegment
Data: [S , {S}]
Result: [S]
/* retrieve the components of the input segment */

[P ,L,O, ρ]⇐ S
/* refine the segment iteratively */

for outer = 0 ; outer < outermax ; outer++ do
/* update local frame and eliminate outliers */

for inner = 0 ; inner < innermax ; inner++ do
L ⇐ estimateLocalFrame({S})
[S , n]⇐ outlierEliminationNormals(S)
if n = 0 then

break
end
/* update model parameters and eliminate outliers */

for inner = 0 ; inner < innermax ; inner++ do
[Oc, ρ]⇐ fitModel(S)
O ⇐ O + VRL Oc
[S , n]⇐ outlierEliminationRadius(S)
if n = 0 then

break
end

end

inverse. The center and the radius of the model are found as

ÕLss = −1

2

f1,2

0

 (6.28)

ρs =

√
||f1,2||2

2

16
− f3. (6.29)

Note that the model center, Õs, is defined in its corresponding local frame, Ls. At each

refinement step, the model center is used to update the local frame origin, Os. The update

is written as

Os ⇐ Os +
(VRLs) ÕLss . (6.30)

The model fitting algorithm is given in Algo. 7. Also a sample output of this is given in

Fig. 6.7. This equation indicates that the model center and the local frame have to be aligned

102

Figure 6.7: This figure shows a sample segmented point cloud data. To each segment a
cylindrical surface is fitted using the method summarized in Algo. 7.

due to the cylindrical cross-section assumption. This always holds in straight sections of the

tunnel whereas ` should be chosen to be smaller as the curvature of the tunnel increases,

such as around bends.

The second outlier rejection uses the cylindrical surface assumption. Points that are far

from the surface are marked as outliers. This criterion is given as

∣∣∣∣∣∣∣∣1− 1

ρs

(
pLsi,(y,z)

)∣∣∣∣∣∣∣∣
2

≤ τρ (6.31)

where ρs is the radius of the segment Ss and τρ is a constant threshold that is in the range

[0.1, 0.2].

The segment refinement process is explained in Algo. 8 and the complete local map estima-

tion process is given in Algo. 9. Also Fig. 6.4b illustrates these steps. In this figure, the

green and light-blue shaded rectangles designate the regions of each local frame, L0 and

L1 respectively. Points belonging to each region are denoted as P0 and P1. The algorithm

starts with the initialization step as illustrated in Fig. 6.4a. The points inside the shaded

region in Fig. 6.4a are then used to refine the local frame estimate L0. After the refinement,

we obtain
{

(L0)x̂, (L0)ŷ, (L0)ẑ

}
and O0 defined in V. Then, a cylindrical surface is fit to

P0 with all the corresponding parameter uncertainties as explained in the following sections.

Once the 0th segment is processed, an initial guess for O1 and α̂1 is made by extrapolating

α̂0 by ` meters. This guess is then refined to obtain
{

(L1)x̂, (L1)ŷ, (L1)ẑ

}
and O1 using

103

Algorithm 9: buildLocalMap

Data: [P]
Result: [{S}]
/* apply radius and voxel filters Sec.

6.3 */

P ⇐ downsample(P)
/* estimate surface normals and uncertainties Sec.

6.3.1 */

[{n̂} , {S}]⇐ estimateSurfaceNormals(P)
/* estimate initial segment Algo.

3 */

L∗ ⇐ estimateLocalFrame({S})
O∗ ⇐ 0
for s⇐ 0 ; s ≤ smax ; s++ do

for t ∈ [−s, s] do
/* retrieve point cloud that makes the current segment */

Pt ⇐ segmentPointCloud(P ,Lt−)
/* initial current segment */

Lt ⇐ Lt−
Ot ⇐ Ot− + sign (t) ` (Lt−)x̂

St ⇐ [Pt,Lt,Ot]
/* Algo.

8 */

St ⇐ refineSegment(St, {S})
/* removed used points */

P ⇐ P\Pt
if P = ∅ then

break;
end
s++

end

104

the point set P1 where P1 consists of all the unused points that are at most `/2 meters away

from the (L1)ŷ-(L1)ẑ plane.

6.5 Uncertainty Estimation of Local Frames

The uncertainty of the tunnel axis, α̂, is estimated in a similar way as the normal uncertainty

estimation. We estimate this by propagating normal uncertainties through the equation

Σα̂ =

(∑
i

∂α̂

∂n̂i
(Σn̂i)

−1 ∂α̂

∂n̂i

>
)−1

(6.32)

where the summation is over all surface normals that contribute to the estimation of the

given local tunnel axis. The partial derivative of the local tunnel axis with respect to the

normals is calculated in a similar way as the normal vector partials. Let λi be the smallest

eigenvalue of M in Equ. 6.17 with its corresponding eigenvector being ê = α̂. Each column

of the derivative of α̂ is given as [7]

∂α̂

∂n̂i,c
= (λiI−M)†

∂M

∂n̂i,c
α̂ (6.33)

where I is an identity matrix, n̂i,c is the cth component of n̂i with c ∈ {x, y, z} and

∂M

∂n̂i,x
= W2

i,i




n̂>i

01×3

01×3


>

+


n̂i

01×3

01×3


 (6.34)

∂M

∂n̂i,y
= W2

i,i




01×3

n̂>i

01×3


>

+


01×3

n̂i

01×3


 (6.35)

∂M

∂n̂i,z
= W2

i,i




01×3

01×3

n̂>i


>

+


01×3

01×3

n̂i


 (6.36)

105

where W was previously defined for Equ. 6.17. The Jacobian in the above equation may be

written

∂α̂

∂n̂i
= (λiI−M)†

[
∂M

∂n̂i,x
α̂,

∂M

∂n̂i,y
α̂,

∂M

∂n̂i,z
α̂

]
(6.37)

This can be substituted in Equ. 6.32 to get Σα̂.

6.6 Robot State and Its Uncertainty

We employ the same state definition, process model and measurement updates as in Chap. 5.

The lateral and vertical positions of the robot as well as the yaw angle are estimated indirectly

by the segment fitting algorithm discusses in the previous section. This section explains the

transformation from segment estimates to the measurement model domain.

Complete robot orientation can be estimated only with the presence of an IMU since roll and

pitch angles are not observable to the range sensor as discussed previously. We integrate the

rotational velocity from the IMU in our UKF at a high rate and also perform a measurement

update at a lower rate using the onboard autopilot attitude estimate which applies gravity

correction to eliminate possible error accumulation in the roll and pitch estimation. The

process model and the corresponding measurement update are given by Equ. 5.2 and in

Sec. 5.3.3.

The yaw component of the robot state, xψ, can be inferred using the local tunnel axis

estimate, α̂0. For clarity, we will omit the subscript in the following derivations. On the DJI

platform the IMU frame, I, according to which the controller input is defined, is coincident

with the body frame, B. The segments, on the other hand, are estimated with respect to

the lidar frame, V and the state Euler angles relate the body and the gravity frames. Based

on this, the relation that yields the yaw angle of the robot writes as

G>ŷ
(GRBBRVα̂) = 0 (6.38)

106

where BRV is known due to the sensor external calibration, and GRB is the rotation matrix

corresponding to the state Euler angles, xΩ. The orthogonality of the two vectors is due to

how the gravity and local frames are defined as explained in Sec. 4.1.2. This equation can

be rewritten as

G>ŷ Rz(xψ)Ry(xθ)Rx(φ)BRVα̂ = 0 (6.39)

after expanding GRB into its corresponding Euler angle rotations. The roll and pitch angles,

xφ − xθ, are know from the robot state leaving the yaw angle, xψ, as the only unknown.

After performing the following substitutions

Gŷ = [0, 1, 0]> (6.40)

Rz(xψ) =


cos(xψ) − sin(xψ) 0

sin(xψ) cos(xψ) 0

0 0 1

 (6.41)

α̂G̃ := Ry(xθ)Rx(xφ)BRVα̂ (6.42)

the Equ. 6.39 simplifies to

[sin(xψ), cos(xψ), 0] α̂G̃ = 0. (6.43)

Finally, xψ can be obtained as

xψ = −atan2
(
α̂G̃y , α̂

G̃
x

)
(6.44)

The uncertainty in xψ can be estimated by propagating the uncertainty in α̂G̃ as (omitting

the superscript)

Σψ =

(
∂ψ

∂α̂G̃x,y

(
Σ
α̂G̃x,y

)−1 ∂ψ

∂α̂G̃x,y

>
)−1

(6.45)

107

where

∂ψ

∂α̂G̃x,y
=

1∣∣∣∣∣∣α̂G̃x,y∣∣∣∣∣∣
2

[
α̂G̃y , −α̂G̃x

]
. (6.46)

The uncertainty of the local tunnel axis in the intermediate G̃ frame can be obtained as

Σ
α̂G̃

= R̃Σα̂R̃
>

(6.47)

R̃ := Ry(xθ)Rx(xφ)BRV (6.48)

which completes the derivation of Σψ.

We prefer defining the position of the robot with respect to the local map origin, O := O0

rather than a fixed world frame. This offers an intuitional way of defining way-points for the

controller and also makes the estimator immune to drifts in vertical and lateral directions.

Similar to the way we inferred the robot orientation from the central segment axis, we

transform the central segment origin, O0, which is estimated with respect to the lidar frame,

V, to get the robot lateral and vertical positions in the local map frame, L := L0. This is

found as

xy,z = −
(LRV O0

)
y,z
. (6.49)

The uncertainty in xy,z is a linear transformation of the uncertainty of O0, which writes (all

in V)

Σy,z =

 ∑
pi∈{P0}

(
∂O0,(y,z)

∂pi

)
Σpi

−1

(
∂O0,(y,z)

∂pi

)>−1

(6.50)

108

where

∂O0,(y,z)

∂pi
=
∂O0,(y,z)

∂f

∂f

∂pi
(6.51)

∂f

∂pi
= A†

(
∂b

∂pi
− ∂A

∂pi
f

)
(6.52)

and

∂A

∂pi,x
= 0,

∂A

∂pi,y
= δi,0,

∂A

∂pi,z
= δi,1,

∂b

∂pi,x
= 0,

∂b

∂pi,y
= −2δi,0 pi,y,

∂b

∂pi,z
= −2δi,0 pi,z,

∂O0,y

∂f
= −1

2


1

0

0

 , ∂O0,z

∂f
= −1

2


0

1

0


and δi,j is a zero matrix except that it is 1 at (i, j). A,b and f are the tensors first introduced

for the model fitting algorithm in Sec. 6.4.3. We can obtain the uncertainty in position in

the lidar frame by chaining the above partials. Finally, this can be transformed into the

local map frame as

ΣLy,z = R̄Σy,zR̄
> (6.53)

where R̄ is the top left 2× 2 block of LRV . One should note that we silently assumed that

O0,c ≡ O0 which is valid for a successful cylinder fitting.

6.7 A Discussion on Estimator Robustness

The previous section explains the procedure for inferring the robot state from the local map

measurement. In summary, the state of the central segment is inverted and used in the

109

measurement update of the underlying Kalman filter. The rest of the segments are not

used at all for this inference which might raise questions about the necessity of building a

larger map and robustness of the robot state measurement. We refer to the next chapter

for detailed answers to these questions which explains an improved version of this estimator

that utilizes all the segments to robustify this process. On the other hand, building a larger

(longer) local map, even though not used in robot state estimation, is beneficial for detecting

obstructions which can be used in path planning and shared control. A sample case where

this feature is used to detect the end of a penstock and prevent the robot from crashing

into the gate is shown in Fig. 6.9b. The number of segments estimated in forward and

backward directions can also be adjusted independently depending on the direction of the

robot motion along the axis if axial speed or, at least, its direction is available. Optical flow

from the cameras or the pitch angle of the robot can be used for this purpose. Estimating

only as many segments as required for shared control will also occupy less CPU time and

battery power.

The latter point regarding the robustness is rather concerning. The circularity assumption

does not hold for certain sections of penstocks such as along sharp bendings and at sections

close to the gate. While a few glitches per second in the robot state measurement can be

handled easily by the Kalman filter, erroneous measurements for longer periods might cause

divergence of the filter. A relatively easy solution to this would be to increase the length of

the central segment at the cost of measurement accuracy. When too few points are used,

especially the segment orientation estimation may fail grossly (Fig. 7.8), and using more

points would remedy this weakness of the optimizer (Sec. 6.4.3). Thus increasing the length

of the central segment, hence using more points, reduces the likelihood of abrupt changes

in the central segment estimation. Along non-straight sections of a penstock, increase in

the segment length would degrade the measurement accuracy since the straight cylindrical

segment assumption does not hold. Two segments, one short and the other long, can be fit

and compared to check if the short segment is close to the longer one. If the short segment

estimate passes this sanity check, then it can be used for the Kalman measurement update.

110

6.8 Obstacle Avoidance and Shared Control

The local map of the tunnel is used to detect free space for navigation as well as for state

estimation. The points that are marked as outlier by the robust cylinder fitting algorithm

explained Sec. 6.4.3 are treated as obstacles by the path planner. In this work, for robustness,

a nonlinear controller is used based on [80], [100] details of which we leave to the original

papers. The path planner is implemented as a line follower. In case the distance of the

platform to an outlier point cluster is less than a certain threshold, the component of the

planned motion towards the obstacle is canceled. For example, when the robot is flying

close to the gate as shown in Fig. 6.9b, the obstacles in front of the robot prevent the

robot from flying further only in forward direction while lateral and vertical motions are

still allowed. This effect is achieved by the onboard controller programmed to override the

high-level commands given by the human operator when the robot is close to an obstacle.

The accuracy and robustness of the obstacle avoidance feature is pertinent to the accurate

knowledge of the robot state. When the obstacle is within the range and field of view of the

lidar, accurate control and robust obstacle avoidance can be achieved due to the accuracy

of range sensors. This is always the case along the cross-section of the tunnel and when the

robot is close to a terminus of the tunnel.

Accurate control along the axial direction would be possible all the time if other sensor

modalities such cameras (Chap. 5) or a Ultra-Wideband distance sensors (UWB) are also

used. Otherwise, this motion can only be controlled by directly adjusting the robot pitch

angle which is observable only to the onboard IMU. However, measurement noise, drag effect

and inaccuracy in IMU bias estimates render axial motion control in this way unreliable.

For these reasons, we equipped the DJI platform with an analog FPV camera for human

operator awareness.

111

Figure 6.8: Photos of the DJI experiment platform flying inside a penstock at Center Hill
Dam, TN. The onboard illumination is required for the testing. However both for safety
concerns and for imagery collection, we kept the LEDs on.

6.9 Experimental Results

In this section, we report the results of the experiments performed in a penstock at Center

Hill Dam (CHD), TN. The DJI platform is shown from different views in Fig. 6.8. The goal

of our experiments is to show that the robot can autonomously navigate to the end of the

tunnel semi-autonomously, concurrently reconstructing the local environment. The human

operator is provided with two alternative interfaces for controlling the robot. Through a

GUI running on the base station, the operator can arm or disarm the robot, and also give

high level position commands. Alternatively, the operator can control the robot through the

radio control. In either case the operator has to continually adjust the pitch of the robot

for motion along the tunnel axis.

As the robot climbs along the inclined section, it gets out of line of sight of the operator. For

real-time awareness of the operator we equipped the platform with an analog camera that

works independent from the data link between the robot and the base station. Furthermore,

in case the operator cannot perceive the field of depth from the monocular analog stream,

or the video connection cuts off, we also implemented an onboard shared controller that can

override the operator commands when required. For example, the robot can detect the gate

112

at the upper terminal or any large obstacle blocking the tunnel and override the operator

commands to avoid collision. Fig. 6.9 shows the video stream and screen shots from the

RViz visualization tool while the robot is flying.

In all the experiments, the robot starts at an arbitrary point in the horizontal section and

traverses the tunnel until the end of the inclined section. The one-way flight distance in the

particular penstock is approximately 80 meters which our robot can traverse 2-3 times with

a single battery pack. By traversing the penstock multiple times end-to-end, we show that

the transition between the horizontal and the inclined sections are handled successfully. In

some of the tests, the human operator stood closer to the opposite terminal of the tunnel

and did not have the robot in his sight for most of the flight. The only source of awareness

was the video stream from the onboard FPV camera. In these tests, we could assess the

performance of the shared controller and the obstacle avoidance capability.

The flight starts with the operator commanding the robot to align itself with the tunnel

centerline using either the GUI or the radio control. In order to reduce vortex formation

which occurs when the robot is close to the walls, and also to maximize the image bright-

ness, we command the robot to align with the center-line (xy,z,ψ = 0). Due to the robot

state choice and the way we formulate the estimator, independent of the tunnel geometry,

the robot always follows a path at a constant distance from the centerline. Then the op-

erator can command the robot to go forward or backward along the tunnel by pitching it.

The snapshots from the RViz visualization tool in Fig. 6.10-6.11 show the processed point

cloud at different sections of the tunnel. In Fig. 6.12 it can be seen that the robot closely

follows these commands except for oscillations and a constant offset in xz due to imprecise

controller parameter tuning. Lastly, the actual diameter of the penstock is 5.5 meters and

our algorithm can estimate it within a 5% error.

113

(a) In the left image, the robot is about the start climbing through the inclined section. The
top-right image shows the tunnel sloping up from the robot’s perspective. The point cloud
segments with distinct color and segment separator planes plotted in RViz.

(b) The left image is captured when the robot is ∼ 4 meters from the gate. At this moment
the onboard controller overrides the operator commands to fly the robot further forward since
the gate is at a critical distance from the robot. The gate can be clearly seen in the top-right
image. The purple blocks in the bottom-right image are the points classified as obstacles.

Figure 6.9: These figures show two instants captured during our tests at Center Hill Dam,
TN. In both cases the robot is flying semi-autonomously in shared-control mode.

114

Figure 6.10: Screenshot from the RViz visualization tool showing the robot flying with
shared control along the horizontal section of the tunnel. The colored point cloud and their
corresponding meshes demonstrate the output of the segmentation and the cylinder fitting
algorithms. The robot is shown with a red CAD model at the very center of the meshes.

Figure 6.11: Screenshot from the RViz visualization tool showing the robot flying with
shared control along the inclined section of the tunnel after ∼ 20 seconds after the take
off. The estimation results of this experiment are presented in Fig. 6.12c. The algorithms
does not require any modifications to handle the transition between the horizontal and the
inclined section.

115

(a) Experiment #1

(b) Experiment #2

(c) Experiment #3

Figure 6.12: Vertical and lateral position, xy,z, of the robot while traversing entire penstock.
Shades around the plots are the corresponding inflated standard deviations. In these tests,
the robot was commanded to follow a straight path at a constant distant from the centerline.
The offset in the z position is due to the inaccurate controller parameters.

116

Chapter 7

Modeling Tunnels as Smooth

Generalized Cylinders

The work presented in this chapter focuses on the state estimation and local mapping of an

MAV equipped with a 3D Lidar and an IMU for autonomous navigation inside penstocks

with improvements over the approach presented in the previous chapter. We attain a higher

level of reliability and robustness through modeling the tunnel as a parametric piecewise-

smooth-generalized-cylinder (PSGC) [6], [48]. This improvement is of great importance due

to possible safety issues unique to the confined penstock setting. Another significance of this

model and the particular solution we propose is due to most of the range-based methods

such as [114], [123], which rely on the presence of geometric cues, fail in the featureless

tunnel setting.

Our claim is that uniaxial, axisymmetric and featureless tunnels can be mapped more ac-

curately and robustly if represented as a smooth, connected set of parametric cylindrical

segments compared to the common choice of raw point cloud representation or as a set of

disconnected segments as in the previous chapter. We formulate the segment measurement

model as a constrained optimization problem that respects the axisymmetric and smooth

tubular geometry of the environment. To achieve this, this optimizer fits a chain of cylindri-

117

cal segments defined by their position, axis and radius from the raw point cloud data. The

optimizer imposes rotational and translational constraints in addition to penalizing other

possible solutions that do not comply with a probability distribution derived from the raw

point cloud data. A novel feature of this work is the use of spherical data analysis tools

from the directional statistical literature for noise filtering and constrained optimization on

S2 [17], [125]. Lastly, the segments are tracked by a constrained UKF running on a manifold

[137] to filter the effects of noise temporally.

The method presented in this chapter differs from the previous approaches in various as-

pects. Our work described in Chap. 4 relies on a single 2D laser scanner retrofitted with a

mirror setup to reflect a subset of its rays to the ceiling and floor. The approach of Chap. 5

uses two 2D laser scanners one of which is tilted downwards and the other facing forward.

Unlike this approach, both methods assume a map of the environment is given, hence only

perform localization. This is due to the fact that building a 3D map using only 2D range

measurements in a tunnel setting is either infeasible or does not lend to reliable state esti-

mation due to multi-modal nature of the problem. Lastly, in the previous chapter, we used

the same sensor suite for local mapping and localization as in this approach. However, the

segments were geometrically independent from each other, hence the optimizer was virtually

free to converge at a state unconformable with the tunnel geometry. The approach of this

chapter models a tunnel as a set of temporally and spatially smooth, connected segments.

We can list the fundamental limitations of our previous approaches that we overcome in this

work as : First, we model the uniaxial, axisymmetric tunnel as a parametric, deformable

piecewise-smooth-generalized-cylinder . This imposes constraints on the measurement model

and the Kalman filter preventing the state from diverging even if the PSGC assumption

fails. Second, we use the Watson distribution, a statistical tool that models axially sym-

metric distributions on Sp, which has not been exploited by the robotics community to our

knowledge. We use this tool to perform outlier elimination on S2 and to preserve consistency

between local map segment orientations. The effect of this tool is more prominent especially

when the cylindricality assumption does not hold. Third, we integrate sensory information

for robot pose and local map estimation in a constrained UKF running on an appropriate

118

Figure 7.1: Illustrations for various piecewise-smooth-generalized-cylinder (PSGC) shaped
environments. The center line curves of the right two topologies are piece-wise functions.

manifold.

Although we present results from a penstock, the proposed principles should not be thought

to be peculiar to this infrastructure. They can be used in other environments which exhibit

PSGC structure such as mine shafts, caves and sinkholes, highway tunnels and building

corridors (Fig. 7.1).

7.1 Point Cloud Processing

Accurate surface normal estimation plays an important role in the proposed method since

segment fitting process is formulated as an optimization problem with its cost function

dependent on surface normals and curvatures. We use the method explained in Sec. 6.3.1

for surface normal and curvature estimation. This method calculates a scatter matrix of the

k-nearest neighbors of a given point and takes the eigenvector corresponding to the smallest

eigenvalue of this matrix as its surface normal. The ratio of the smallest eigenvalue to the

summation of all three is taken as the curvature at the point of interest [76], [130]. Nearest

neighbor search is sped up using a Kd-Tree. We also apply a voxel filter on the raw point

cloud to reduce the point count and save CPU time.

119

7.2 Local Map as a Generalized Cylinder

A penstock has a well-defined geometry rarely encountered in indoor robotics applications.

The simple geometry, however, brings challenges in mapping and estimation with. The

representation of the map must be compatible with the inherent uncertainty in the robot

axial position, and offer flexibility to conform to changes in the tunnel profile as the robot

flies through it. For these reasons, we have chosen to model penstocks, as a generalization of

an ordinary cylinder where the center axis can be any continuous spine and its radius may

change along the axis (Fig. 7.1). The robot pose is represented with respect to the centerline.

Since the centerline is a 1D manifold and can be parametrized with a single variable, it lends

to modeling the axial position uncertainty. Binford [3] was the first to introduce the notion

of a generalized cylinder in 1973. This became popular in robotics after Brooks’ work in

1983 [6].

Due to the discrete nature of the lidar point cloud, we formulate the problem of estimating

the continuous spine and radius functions in two stages. In the first stage, these two functions

are estimated at equally spaced points along the tunnel axis. We refer to these points as

knots. In the second phase, we use a Bézier interpolation to obtain the continuous local map.

Since the mapping from the discrete map to the continuous map is unique, we represent the

local map, without any loss, as an ordered set of knots, i.e. L := {K}. The number of knots

of the local map may change throughout a flight depending on the visible penstock volume.

Knot estimation and local map construction algorithms are explained in Sec. 7.4.

7.2.1 Map Knots

A knot is defined as

K :=
{
r, t̂, ρ,P ,W

}
(7.1)

120

where r ∈ R3 is its position, t̂ ∈ S2 and ρ ∈ R+ are the spine tangent and the radius of

the generalized cylinder at r respectively. P is the subset of the raw point cloud used to

estimate the knot. As well as the Euclidean positions of its points, P also includes other

features associated with each point such as surface normals and curvatures. Lastly, W is

a Watson distribution fitted to a knot’s associated point cloud which is used for filtering

purposes as will be explained in the subsequent sections. Details of Watson distribution and

how to fit a Watson distribution to a point cloud are explained in Sec. 7.3

While a discrete local map would suffice for state estimation and navigation, in the filtering

context, a discrete map falls short for defining a distance metric. More specifically, the local

map estimated at a given time step is updated by a UKF using the knot measurements

at the following time step. The innovation step (measurement update) of a Kalman filter

requires a proper distance metric defined between two measurements as well as the ability

to uniquely associate them. Since the shape of the local map may change as the robot

flies through the sections of the tunnel with different bending profiles and diameters, knots

tracked by the filter and those given by the measurement model may not overlap perfectly

which results in the data association to become ill conditioned. For this reason, the spine

and radius functions are interpolated using a Bézier approximation with knots of the discrete

local map being its control points. As will be discussed in the next section, an unambiguous

data association and a valid distance metric on a Bézier curve can be defined under certain

assumptions.

7.2.2 Bézier Interpolation

In the previous section we provided a discrete representation of the environment. However,

given that a penstock is smooth, we can interpolate the sections between knots using a

Bézier spline. This has several benefits such as the total curvature of the tunnel centerline

provides a metric for the fitness of the local map, a 3D mesh of the tunnel can be recon-

structed which then may be used for path planning etc. More importantly, two maps can be

quantitatively compared using their corresponding Bézier splines to determine how similar

121

Figure 7.2: Generation of Bézier knots from tunnel axis tangents illustrated on a sample
three segment local map.

or close they are to each other.

A Bézier spline is defined by an ordered set of knots, {K}. In our case, only the positions

of the knots could have been used as the control points, {o} with oi = ri, which would give

an acceptable approximation. However, we would like also to incorporate the axis tangent

information for a more accurate interpolation. For this, we add two more control points to

the opposite sides of each knot (only one to the terminal knots) which are obtained as

oi− = ri + sign (i)
`i
2

t̂i

(
t̂
>
i r̂i

)−1
(7.2)

oi+ = ri + sign (i)
`i+

2
t̂i

(
t̂
>
i r̂i+

)−1
(7.3)

where ` and r̂ are defined as

`i = ||ri − ri− ||
2

(7.4)

r̂i =
ri − ri−

`i
. (7.5)

We adopt the .+ and .− indexing operations previously defined in Sec. 6.1. With these addi-

tional control points, a local map consisting of n knots is approximated with a Bézier curve

of m = 3n − 2 control points. The corresponding Bézier spline for the local map, B́L, is

122

obtained as

B́L(t) =
m−1∑
v=0

ov Bv,m(t) (7.6)

Bv,m(t) =

 m

v

 tv(1− t)m−v (7.7)

where t ∈ [0, 1], the second equation is the vth Bernstein basis polynomial of degree m.

Fig. 7.2 shows the control points on a sample map. Lastly, {o} is the ordered array of

control points given as

{o} =
{
· · · ,o(−1)+ ,o(−1),o(−1)− ,o0− ,o0,o0+ ,o1− ,o1,o1+ , · · ·

}
. (7.8)

We implicitly assume that there is a mapping between the indices used in Equ. 7.6 and the

control points.

We can define a distance metric between two knots as a function of their positions and axis

tangents as

< Ki,Kj > = αp ||ri − rj ||
2

+ αo

(
1−

∣∣∣̂t>i t̂j

∣∣∣) (7.9)

where αp and αo are weights assigned to position and orientation difference. Based on this

metric we can define an operation which gives the closest point to a segment on a spline as

B́(K) =

{
B́(t∗)

∣∣∣∣ t∗ = argmin
t

< B́(t),K >, t ∈ [0, 1]

}
. (7.10)

It should be noted that we used a point on the spline, i.e. B́(t), rather than a knot in the

distance calculation. But this is a valid operation, since a point on a spline, in addition to

a position, has a tangent which equals

ˆ́
B(t) =

dB́(t)

dt

∣∣∣∣∣
∣∣∣∣∣dB́(t)

dt

∣∣∣∣∣
∣∣∣∣∣
−1

2

(7.11)

123

Figure 7.3: These illustrations show two cases where the closest point on a spline (dark
green) is not unique. (Left) The set of closest points to the blue query point located at the
center of the circular arc is the whole arc. (Right) There are two closest points to all query
points along the dashed blue line one on each linear section of the curve.

We will use this operation during the calculation of innovation in the measurement update

step of our UKF.

A careful reader would notice that the operation defined in Equ. 7.10 might not yield a

unique solution for certain spline shapes and query points. For example consider the case

that the spline is a circular arc and the query point is the center of the corresponding

circle. Then the result of this operation becomes a range of points. In general, if the query

point is on the boundary surface (curve, if 2D) of the generalized Voronoi diagram of the

Bézier spline, the closest point on the spline is not unique. Sample cases are illustrated in

Fig. 7.3.

Within a filtering context, however, the range of points can be reduced to a single point

using prior information. The optimization process explained in Sec. 7.4.1 estimates knots in a

specific order and one at a time. Corresponding points of these knots along the Bézier spline

that represents the most recent local map is found using the operation defined in Equ. 7.10

which are then used in the measurement update of our UKF as discussed in Sec. 7.5.3.

Since the knot measurements are provided in a certain order, their correspondences along

the spline must follow the same order. The ordering of the correspondences is defined by their

t coordinates (Equ. 7.6). In most cases, multiple solutions can be reduced to a single one

exploiting this constraint as shown in an example on Fig. 7.4. When disambiguation is not

possible, we simply discard that knot measurement and perform the Kalman measurement

124

Figure 7.4: These illustrations show two cases where the closest point on a given spline
to a knot is not unique. In the case depicted on the left, by exploiting the order of knot
measurements {K}, one of the two closest points (red) to K3 is eliminated. On the right
illustration, since the relative position of K3 and K4 changes, the ordering of measurements
does not suffice to disambiguate the closest point to K3.

update with the rest of the measurements. We can liken this to an image feature being

matched to multiple features across frames in a visual odometry application. The wisest

strategy would be to discard such image features so as to prevent the camera state from

diverging.

7.3 Distributions on Sd−1

The statistical tool of choice in regression and estimation problems is normal distribution

which is originally designed for Euclidean space. Under certain circumstances and with

appropriate assumptions, random variables on manifolds can be analyzed with this tool.

However we believe that the tools from the directional statistics literature specifically de-

signed for spherical data should be used for data on spherical manifolds. In particular, unit

vectors with widely spread uncertainties are often analyzed using normal distributions with

self-wrapping overlooked. Because of this, we use Watson distribution on S2 (Section 9.4 in

[17]) to describe the set of possible tunnel axes as well as to perform outlier elimination.

Watson [2] and Bingham [4] distributions are the two mostly used spherical distributions

in the literature. Watson distribution (WD) is a special case of Bingham distribution (BD)

where the spread is symmetric with respect to the distribution mode. Due to its formulation

(Sec. 7.3.2) WD can represent only axisymmetric distributions limiting its use cases. On

125

the other hand numerical calculations involving WDs are easier to work with compared to

the more complex BDs.

7.3.1 Literature Review on Spherical Distributions

Scenarios which include unit vectors are the natural application areas of spherical distribu-

tions such as surface normals in point cloud processing, image feature direction in computer

vision and orientation vectors in control and estimation. In a robotic manipulation sce-

nario [46] uses WD to represent orientations that the robot hand can grasp an object. In

a supervised learning scheme, the researchers collect feasible hand orientations of a human

teacher which are then encoded as a girdle distribution. The controller is designed to ex-

clude the don’t-care orientations which is naturally encoded by the axisymmetric equatorial

distribution.

Although designing spherical distributions is practically straightforward, the normalization

factor makes their use prohibitively difficult due to hard to compute special functions and

numerically unstable integrals. In a study concerned about such fundamental aspects of mul-

tivariate high dimensional WD, [104] proposes novel, numerically accurate, easy to compute

approximations to maximum-likelihood estimates. This work offers a theoretical contribu-

tion to diametrical clustering used for gene-expression analysis.

BD is a generalization of WD which can represent anisotropic spreads on spheres [4]. Due

to this capability, it found more use cases such as in computer vision [24], object detection

[97], orientation estimation [89], [99], [109], [126] and pose estimation [108], [132]

In another robotics manipulation application, [89] uses BD to analyze point cloud for ob-

ject orientation estimation. In this work, the researchers fit a Bingham mixture model to

spherical surface orientation data extracted from a given raw point cloud data. This is then

used for sampling orientations from a hypersphere which are tested against a given model

for object pose estimation.

In a computer vision application, [24] uses BD for representing image feature point coor-

126

dinates and uncertainties in projective space which are then used during feature matching

and camera relative pose estimation. [97] proposes a new system for object detection from

RGB-D camera data. This work uses a BD for scoring possible model orientation hypotheses

to prune high number of possibilities to speed up their detection pipeline.

Orientation tracking is a fundamental problem in robotics. Most existing work uses tradi-

tional methods such as Kalman Filter without considering the periodic nature of rotations

which results in poor performance. [99] proposes a recursive estimator for tracking 2D ori-

entation based on BD. The authors later improve their work and extend it to work for 3D

rotations using a UKF [126]. The authors compare their results particularly for high noise

scenarios against classical UKF with a Gaussian noise model and Particle Filters (PF) with

various particle counts. Due to its ability to handle periodicity in orientation, the new

approach using BD outperforms all other methods.

In their work Gilitschenski et al. [108] uses BD to represent rigid body transformations on

SE(2). This work assumes that the rotation and translation random variables of a robot

pose are sampled from an exponential distribution (definition 1 in the paper). The proposed

distribution relates the position uncertainty of a robot to the parameters of a BD that

represents its orientation uncertainty. In doing this, [108] uses dual quaternions to handle

problems arising due to equivalence of antipodal points under BD.

The robotics literature uses the two spherical distributions for various purposes such as

orientation tracking, pose estimation and accurate uncertainty representation. Our work

contributes to the literature for similar considerations such as model fitting and noise filtering

as explain in the subsequent sections.

127

Figure 7.5: Synthetic data on S2 sampled from uniform, girdle and bipolar distributions.

7.3.2 Watson Distribution Formulation

The density of a Watson distribution which gives the probability density over the unit vectors

x̂ is written as

W (±x̂, µ, ς) = M

(
1

2
,
d

2
, ς

)−1

exp

(
ς
(
µ>x̂

)2
)

(7.12)

where µ is the mode, ς is the concentration parameter and M (1/2, d/2, ς) is the Kummer

function. This function is defined as

M

(
1

2
,
d

2
, ς

)
= β

(
d− 1

2
,
1

2

)−1 ∫ 1

−1
eςt

2
(1− t2)

(d−3)
2 dx. (7.13)

where d = 3 for S2 and β is the beta function. The Watson distribution takes the form of a

bipolar distribution for ς > 0 and becomes a girdle distribution for ς < 0 [17]. Distributions

for different synthetic data are shown in Fig. 7.5.

As will be discusses in the following sections, the segment fitting process is designed as an

optimization problem which minimizes a combination of various cost functions. One of these

cost functions is the likelihood of a given direction vector being the mode of the WD fitted

to the surface normals. It should be noted that the likelihood of a unit vector with respect

to a WD and the likelihood of a unit vector being the mode of a WD are not necessarily

the same. When ς ≥ 0, the likelihood of a point, x̂, being the mode is the same as the

128

distribution itself, i.e.

Wm (x̂, µ, ς) =W (x̂, µ, ς) (7.14)

However when ς < 0, the mode likelihood becomes (omitting the parameters of the Kummer

function for brevity)

Wm (x̂, µ, ς) =
2

M

∫ π

0
exp

{
ς

(
1−

[
µ>x̂

]2
)
cos (θ)2

}
dθ (7.15)

which is an integral over the great circle perpendicular to x̂. Since these integrals are

prohibitively time demanding, we use lookup tables in our implementation.

7.3.3 Watson Distribution Fitting

An important novelty of this work is the use of spherical distributions to filter outliers

and suppress their effect in the state estimation. Details of these will be discussed in the

subsequent sections. In this section, we explain the Watson fitting process to a set of unit

vectors, which are the surface normals in this particular application. In addition to fitting a

WD using only data points, we also present how to incorporate priors in the fitting process

where the priors are WDs as well.

The WD corresponding to a set of data points, {x̂}, in the maximum likelihood sense, can be

found through an eigenvalue analysis on the scatter matrix of the data points. The scatter

matrix is obtained as

S =
∑
i

x̂>i x̂i. (7.16)

According to the relative values of the eigenvalues of S, the shape of the distribution can

take three forms. These cases can be listed as (Table 10.1 [17])

• e1 ' e2 ' e3 : uniform

129

• e1 � e2 ' e3 : bipolar

• e1 ' e2 � e3: girdle.

The mode of the distribution is determined according to its shape. If the distribution is

uniform, either of the eigenvectors of S can be chosen as the mode. For the bipolar case, the

eigenvector corresponding to the largest eigenvalue, and for the girdle case the eigenvector

corresponding to the smallest eigenvalue is chosen as the distribution mode.

We can say very little about the spread of the distribution by only knowing its shape

and mode. On the other hand the concentration parameter, ς, explains the spread of the

distribution as well as its shape. ς > 0 for the bipolar case, ς < 0 for the girdle case

and |ς| < 1 for a uniform shaped WD. As can be noticed, only for very large or very small

concentration values the distinction is obvious leaving the other regions gray. For this reason,

we exploit the prior knowledge about the data points and constrain the analysis only to the

girdle case.

The data points in our case are the surface normals estimated from the raw point cloud data.

Due to the shape of the tunnel, we expect the corresponding WD to always have a girdle

shape with a large negative concentration value. This expectation fails when the robot flies

around the tunnel sections that do not have a generalized cylindrical shape such as at distal

ends or near the scaffolding. Whether this prior assumption holds can be checked at the

end of the fitting process. In the positive case, mode likelihood, Wm, and the concentration

parameter, ς, will take large and small values respectively.

Determining the concentration parameter is much more difficult than estimating the mode

since the concentration parameter appears in the Kummer function which includes special

functions (Equ. 7.12). Since solving for these functions is prohibitively time consuming for

real-time performance, we fit a polynomial to the equation below, originally given in [17],

which describes the relation between the concentration parameter and the eigenvalue chosen

130

as explained above. This equations is

Dp(ς) = e>3 Se3

=

∫ 1
0 t

2exp
(
ςt2
)
dt∫ 1

0 exp (ςt2) dt
(7.17)

(Equ. 10.3.31/32 in [17] with p = 3). The polynomial is fitted to the inverse of Dp(ς).

A careful reader would notice that the concentration parameter is a function of the data

points and the distribution mode. Hence the MLE solution of a WD can be written as

p(µ, ς|P) = p(µ|P) (7.18)

reducing the complexity of the problem value of which will be obvious in the rest of the

section.

The WD fitted to a given point cloud summarizes the shape of the environment with just

two parameters. This is a very powerful tool to compress large point clouds and save from

compute power and memory. However, a WD fitted using only data collected at a single time

frame is temporally and spatially isolated which, in case the MLE estimate is inaccurate,

may fail the downstream processes in the estimation pipeline. To remedy this, we would

want to feed the fitter with priors which would collectively be less likely to give an estimate

off by large. These priors might be past measurements from the same region of the tunnel

or others from the neighboring regions along the tunnel. In this case Equ. 7.18 should be

modified as

p(µ, ς|P , {W}) = p(µ|P , {W}) (7.19)

where {W} is the set of prior WDs.

In order to find the MLE WD in Equ. 7.19, we use a fixed, large number of hypotheses

(i.e. normals) uniformly placed on a spherical polyhedron of unit radius obtained by recur-

sively subdividing an icosphere as shown in Fig. 7.6. The hypotheses are the vertices of the

131

Figure 7.6: Sample surface normal data from Center Hill Dam experiments and the cor-
responding girdle distribution, i.e. ς < 0, fit with the method explained in Sec. 7.4. (a)
Likelihoods are color-coded with blue and black corresponding to low and high values re-
spectively. (b) Vertices of the mesh are used as hypothesis. (c) Point cloud from which the
distribution is obtained.

triangular faces. A hypothesis, h, is scored as

−
∑{

κ2
i +

(
h>n̂i

)2
}

+
∑

γj log (Wm,j(h)) (7.20)

where the first summation runs over all of the surface normals, n̂i, and curvatures, κi, of

the specified knot, and the second summation runs over all of the prior WDs. As will be

explained in Sec. 7.4, the priors are the WDs of all the knots of the most recent local map.

The multiplicative factor, γj , is a decreasing function of the distance between the knots of

concern and its neighboring knots. We can liken this to averaging a 1D signal.

The hypothesis with the highest score is chosen as the mode, µ∗, of the corresponding

distribution. The effective eigenvalue, λ, and the weight of a given point, wi are calculated

as

λ =

∑
wi|n̂>i µ∗|∑

wi
(7.21)

wi = exp

(
−κ2

i −
(
n̂>i µ∗

)2
+
∑

γj log (Wj(n̂i))

)
. (7.22)

where the summation runs over all of the knots in the local map. Finally we find the

concentration parameter, ς∗, by plugging λ into the inverse of Equ. 7.17. If −5 < ς we

conclude that the surface normal data is extremely noisy and terminate the process. This

corresponds to either a uniform distribution if |ς| is small, or a bipolar distribution if ς > 0.

132

The exponential function is a time consuming operation which may render the real-time

performance impossible. For this reason, we use a polynomial approximation of the form

exp (x) ≈(a0 + x(a1 + x(a2 + x(a3 + x(a4 + x (7.23)

(a5 + x(a6 + x(a7 + x(a8 + x)))))))))a8 (7.24)

which is valid for x ∈ [0, 1]. Numbers outside this limit are factored into precomputed

integer powers of e and a number in this range.

It can be argued that the mode of a girdle distribution could be directly used as the local

centerline tangent. However, we think that a single distribution, such as Watson, compresses

the point cloud information into two parameters, µ and ς, which blurs most of the details

in the raw data. Hence, we use the Watson distribution as one of the factors that define a

cost function and estimate the most likely centerline tangent through a more comprehensive

optimization procedure which we present in Sec. 7.4.1.

7.4 Knot Estimation

This section describes the knot estimation process formulated as a constrained optimization

on S2 × S2. The input to this process is a preprocessed point cloud from the lidar. The

preprocessing includes downsampling, surface normal and curvature estimation as explained

in Sec. 7.1. The output of this process is an ordered set of knots which are then fed as

measurements to a UKF.

Similar to the point cloud processing and segmenting process in Chap. 5, the raw point cloud

data is first segmented into clusters. Every knot is estimated based on their associated point

cloud clusters. The point-to-cluster distance is simply the point-to-plane distance where the

plane passes through the knot position, r, and is perpendicular to the knot tangent, t̂. The

133

point cloud, Pi, associated with a given knot, Ki, is obtained as

Pi =
{
pj ∈ P |

∣∣∣̂t>i (pj − ri)
∣∣∣ ≤ `i} (7.25)

where P is the input point cloud, and `i is the chord length between the knots with indices

i and i− as explained in Sec. 7.2.2. The resultant point cloud associated with the given

knot includes both the points and other features associated with them such as normals and

curvatures.

7.4.1 Optimizer Definition

The optimizer minimizes a cost function of the point coordinates, their surface normals and

curvatures. Its output is position and tangent estimates of a given knot and their uncertainty

estimates. We apply different weights to points according to their various properties to

robustify the optimizer. Since the walls of a penstock are expected to be smooth, points

with high curvature are penalized. Such points are usually due to scaffolding, gates and doors

at the terminals of a penstock, or other obstacles such as equipment and human operators.

Each point is also weighed by comparing its normal against the Watson distribution fitted

in the previous time step of the knot being optimized for as well as WDs of its neighboring

knots.

The cost function is defined as

C = Cr + Ct̂ + CW (7.26)

where the terms are

Cr =
1∑
wi

∑
wi

∣∣∣ρ̄− ||∆pi||
2

∣∣∣ (7.27)

Ct̂ =
1∑
wi

∑
wi

(
n̂>i t̂

)2
(7.28)

CW = − log
(
Wm

(
t̂, µ, ς

))
(7.29)

134

with all the vectors written in the lidar frame, V, and summations running over all the points

associated with the knot being optimized for. For clarity we omit segment indices, but the

reader should be aware that C is written for a particular knot, Ki, using its corresponding

point cloud Pi ⊂ P and spherical distribution, Wm,i.

The terms in the preceding equations penalize respectively (1) the discrepancy between

each point and the knot axis in the point-to-line distance sense and its mean value (i.e.

mean radius), (2) incompatibility between the surface normals and the knot axis, and (3)

the difference between the knot axis and the mode of the corresponding segment’s Watson

distribution. The knot axis, t̂, gives an estimate of the tunnel centerline tangent at the knot

position, r. Lastly, point weights, wi, are calculated as in Equ. 7.22.

The mean radius ρ̄ is calculated as

ρ̄ =
1∑
wi

∑
wi ||∆pi||

2
(7.30)

where summations run over all the points of the knot optimized, ∆pi is the shortest vector

from point pi to the approximate tunnel centerline, r + αt̂ for α ∈ R, and is given by

∆pi = (I− t̂ t̂
>

)(pi − r). (7.31)

The solution to the fitting problem can be written as

{
r∗, t̂∗

}
= argmin

r,̂t

C. (7.32)

However this choice of free parameters does not impose any constraints between the adjacent

knot positions, hence may undesirably cause r end up at a far point from its neighboring

knots. For this, we rewrite this parameter as

ri = ri− + `ir̂i (7.33)

where `i and r̂i are the chord length between adjacent knots and its direction vector as

135

given in Sec. 7.2.2 respectively. Fig. 7.2 shows these two variables on a sample map. We can

rewrite the solution as

{
r̂∗, t̂∗

}
= argmin

r̂,̂t

C. (7.34)

Since ` is a constant, the knot position estimation problem is transformed into finding the

best knot direction. This way, both free parameters are constrained to S2 preventing the

knot position from ending up in an undesirable state. In a real-life scenario, a penstock does

not bend sharply. Another advantage of this particular parameter choice that this type of a

constraint can be easily imposed.

This reparametrization is applicable only to knots which have an anterior knot, i.e. Ki− is

defined. Thus, for the root knot, K0, the optimizer with its original form given in Equ. 7.32

is applied. In order to ensure that the closest point along the centerline to the body origin

is the knot position, we apply the constraint r>0 t̂0 = 0.

The optimizer uses the Levenberg-Marquardt method with adaptive step size to minimize

C. The update is written as

∆r̂

∆t̂

 =
(
J J> + λ diag

(
J J>

))−1
JC (7.35)

where J = ∇C is the gradient of the cost function and λ > 0 is the damping parameter that

determines the step size. Each update is first projected onto the tangent space at the most

recent state as

r̂new = r̂ +
(
I− r̂ r̂>

)
∆r̂ (7.36)

t̂new = t̂ +
(
I− t̂ t̂

>
)

∆t̂ (7.37)

followed by projection onto the unit sphere (not shown). The radius is not included in the

optimization since it can be directly calculated from the knot position and tangent estimates

as given in Equ. 7.30 once the optimization converges.

136

The covariance of the a knot is estimated based on the results of the optimization. The

approximate Hessian scaled with the residual error, which equals the cost evaluated at the

point of convergence, is taken as the uncertainty in the knot position and tangent. This can

be written as

H = J J> + λ diag
(
J J>

)
(7.38)

Σr,̂t = H−1 C (7.39)

Since the knot radius is not included in the optimization, its uncertainty needs to be cal-

culated separately. The full covariance of a knot after incorporating the radius uncertainty

becomes

Hfull =

H J

J> 1 + λ

 (7.40)

ΣK = H−1
full C (7.41)

where λ is the damping coefficient in Equ. 7.35 calculated at the last iteration of the op-

timization. However, this does not reflect the effect of normalization of the knot chord

directions and tangents. This effect can be obtained by multiplying the full Hessian matrix

by the following projection matrix

T =


∂η(r̂new)

∂r̂ ` 0 0

0
∂η(t̂new)

∂t̂
0

0 0 1

 (7.42)

where η (x) = x
||x||

2

is the normalization function, ` is the chord length of the knot. For the

root knot, K0, this matrix becomes

T =


` I 0 0

0
∂η(t̂new)

∂t̂
0

0 0 1

 . (7.43)

137

The gradient of the normalization function is

∂η (x)

∂x
=

1

||x||3
2

(
I
(
x>x

)
− xx>

)
(7.44)

Finally the Hessian after correction becomes

H∗ = T HT >. (7.45)

The knot estimation process starts with the root knot, K0, and continues both in forward

and backward directions. The estimation in the two directions are independent of each

other and one can terminate earlier than the other depending on three criteria. First, if

the Watson distribution fitted to a knot’s point cloud has a concentration value of greater

than τς = −5, the estimation stops. This occurs when the robot is flying close to an end of

the tunnel or to an obstacle blocking the tunnel. For example, the surface normals at the

gate point at random directions (gate is not a planar) which are mostly inconsistent with

the rest of the normals. Secondly, if the mode likelihood of the knot tangent is less than

a certain threshold, the estimator terminates. Lastly, if the current and the previous knot

tangents are significantly different, then we again terminate the process. These conditions

are checked separately for forward and backward map construction. Hence the robot may

stop building a local map in forward direction and continue building a longer local map in

the reverse direction which increases the robustness of the proposed method.

7.5 Filter Design

In this section we explain the details of a constrained UKF that tracks a body-centered local

map of the environment along with the gravity vector and sensor biases. The robot state

which is defined with respect to the centerline of the local map is also tracked indirectly. The

proposed UKF implements two measurement updates which are for gravity vector correction

and local map knot estimation. Based on the tunnel volume visible to the lidar, the state

138

vector expands and shrinks by addition and removal of knots.

Nonlinearities due to components of the state vector prohibit the use of a linear Kalman

Filter. These are the unit vectors in the state which are the gravity vector, knot chord

directions and tangents. Although Extended Kalman Filter (EKF) offers a solution for

nonlinear systems, linearization of the process and the measurement models can get very

complicated and prohibitively time consuming for real-time performance. Hence, we prefer

using a UKF rather than many other alternatives of the Kalman Filter family due to its

superior ability to handle nonlinearities. The seminal work [137] explains that a UKF can

handle nonlinearities up to third order.

7.5.1 State Vector

The system state vector writes as

x =
[
ĝ,b,v, r0, t̂0, ρ0, ..., ri, t̂i, ρi, ...

]
(7.46)

where ĝ ∈ S2 is the gravity vector direction, b = [ba, bω] where ba,bω ∈ R3 are the

accelerometer and gyroscope biases, v ∈ R2 is the translational velocity of the local map

along the local tunnel cross-section. Knot positions and tangents are defined in the lidar

frame, V. Gravity and IMU biases are defined in the body frame, B, which we define to be

coincident with the IMU frame, I. Since these two components are direction vectors and

the only offset between the lidar and body frames is pure translational, we can assume that

all components are defined in the lidar frame, V. Lastly, the velocity vector, v, is defined in

the local map frame, L, and is constrained to the ŷ − ẑ plane.

The size of x changes depending on the visible range of the tunnel by addition and removal

of knots. The unconventional state vector x has the minimal set of variables that fully

represents the robot state and the local map in this unique environment. Although the

robot state is not explicitly included in x, it can be inferred from the local map as explained

in Sec. 7.5.5. Finally the system state covariance is denoted as Σx.

139

7.5.2 Process Model

The process model, f , predicts the evolution of the system state with the control input, u,

and the process noise, c. The process model is of the form

xt+1 = f(xt,ut, ct) (7.47)

where u is the control input comprising of acceleration and rotational velocities from the

IMU which writes as

u = [a, ω] (7.48)

and c ∼ N (0,Σc) is the process noise consisting of noise in acceleration, angular velocity,

acceleration bias, gyroscope bias and Σc is the process noise covariance.

The process model f is defined as



ĝ

b

v

ri

t̂i

ρi


k+1

=



exp (ω̃× ∆t) ĝ

b

v + PLRBã ∆t

exp (ω̃× ∆t)
(
ri + v∆t+ 1

2 ã∆t2
)

exp (ω̃× ∆t) t̂i

ρi


k

(7.49)

where ã = a + gĝ − ba, g is the gravitational acceleration, ω̃ = ω − bω. ω× gives the

skew-symmetric matrix of its vector argument as

ω× =


0 −ωz ωy

ωz 0 −ωx

−ωy ωx 0

 . (7.50)

140

The permutation matrix P is

P =

 0 01×2

02×1 I2×2

 (7.51)

7.5.3 Measurement Model

Our UKF executes two types of measurement updates which are for gravity vector and local

map corrections. The input to the first model is the attitude estimated by the onboard

autopilot. The latter model is fed with an array of knot measurements,
{
K̃
}
, estimated

using the method explained in Sec. 7.4.

The orientation measurement model is a linear operation which writes

zIt = HI xt + mIt . (7.52)

where mI is the additive noise modeled as a zero-mean normal distribution. This measure-

ment is obtained from the orientation estimate of the onboard controller as

zIt = −R(qIt) [0, 0, 1]> (7.53)

where R gives the rotation matrix corresponding to the given quaternion and qI is the

orientation estimate of the onboard autopilot. The IMU measurement model is defined as

HI = [I3×3, 03×8, 03×7, ..., 03×7, ...] . (7.54)

The knot measurement model for a single knot is linear in the state vector too, and writes

as

zKit = HKi xt + mKi
t (7.55)

where mK is the additive noise modeled as a zero-mean normal distribution. i is the index

141

of the measured knot and its corresponding model is written as

HKi = [03×11, ..., I3×7, ...] . (7.56)

There is an implicit mapping between the index i to the corresponding knot’s position in

the state vector.

Measurement error calculation cannot be performed through normal subtraction since the

knot tangents and the gravity vector direction vectors are normalized. For this, we introduce

pure quaternions to represent and rotate points in 3D, and rotation vectors to represent

rotational error and uncertainty. The pure quaternion corresponding to a 3D point p is

qp (p) = [0, p] . (7.57)

The rotation quaternion for a rotation vector ω is

qr (ω) =

[
cos

(
||ω||

2

2

)
, sin

(
||ω||

2

2

)
ω

||ω||
2

]
. (7.58)

The rotation of a 3D point, represented with a pure quaternion as above, can be realized by

evaluating the conjugation of this point with a rotation quaternion as

qp (p)′ ← qr (ω) qp (p) qr (ω)−1 (7.59)

using the Hamilton product. The difference between two vectors is the quaternion that

transforms the subtrahend to the minuend vector. This can be written as

û− v̂ = q | û = q v̂ q−1. (7.60)

As in our case, if both vectors are of unit norm, the resultant quaternion is of unit norm

too. In this particular case, we can circumvent solving for the preceding tedious equation

142

through a geometric reasoning and write that

q = qr (w) (7.61)

w = v̂ × û (7.62)

where · × · is the cross product. The measurement error in knot position and radius can be

calculated using the normal subtraction.

The knot measurement corresponding to a given knot, Ki ∈ L is the closest point, in sense

of metric given in Equ. 7.9, on the Bézier approximation to the knot measurements obtained

from the point cloud, {o} (Equ. 7.8), through an optimization process explained in Sec. 7.4.

This can be written as

zKi =
[
B́(t∗),

ˆ́
B(t∗), B́ρ(t∗)

]
(7.63)

t∗ = argmin
t

< B́(t),K >, t ∈ [0, 1]. (7.64)

If the coordinate of the closest point, t∗, is not inside the [0, 1] range, then Ki is marked for

removal from the local map.

The measurement uncertainty is obtained through a similar interpolation approach. The

position uncertainty of a point on the Bézier curve is the inverse of the weighted average of

the Fisher information of each control point. The weights are simply the Bernstein polyno-

mials (Equ. 7.7) evaluated as the corresponding point coordinate (i.e. t∗). As explained in

Sec. 7.2.2 control points are generated from knot positions and knot axes. The information

for the two types of control points are respectively obtained as

Foi =
1

C
PrH∗,iP

>
r (7.65)

Fo(i−)
=
`i
C

Pt̂H∗,iP
>
t̂

(7.66)

Fo(i+)
=
`i+

C
Pt̂H∗,iP

>
t̂

(7.67)

where H∗,i is the corrected Hessian matrix of Ki, given in Equ. 7.45, of the cost function,

143

C (Equ. 7.26), evaluated both at the point of convergence. The variation in the knot-axes-

borne informations is due to the different multiplicative factors in the construction of their

corresponding control points. The permutation matrices are

Pr =

I3×3 03×4

04×3 04×4

 (7.68)

Pt̂ =


03×3 03×3 03×1

03×3 I3×3 03×1

01×3 01×3 0

 (7.69)

The Fisher information of a point on the centerline, B́(t), is approximated as

F B́(t) =
m−1∑
v=0

Fov Bv,m(t) (7.70)

where Fov is the information matrix of the appropriate type.

The Fisher information of the tangent can be approximated in a similar way as

F ˆ́
B(t)

=

dη
(
B́′(τ)

)
dτ

(dF B́(τ)

dτ

)dη
(
B́′(τ)

)
dτ

> ∣∣∣∣
τ=t

(7.71)

B́′(t) =
dB́(τ)

dτ

∣∣∣∣
τ=t

(7.72)

where η (·) is the vector normalization function. Lastly, the information of radius can be

written as

F B́ρ(t) =
m−1∑
v=0

Fρv∗ Bv,m(t) (7.73)

where Fρv is the control point radius information estimate. Radii of the control points

at i, i−, i+ indices are the same as the source knot’s radius estimate. With the abuse of

notation, we assume that there is an implicit mapping from the index v in the preceding

144

equation to the source knot’s index which we denote as v∗. Finally,

Fρi∗ =
1

C
PρH∗,iP

>
ρ (7.74)

Pρ =

06×6 06×1

01×6 1

 (7.75)

7.5.4 A Constrained UKF on a Nonlinear Manifold

The two sources of nonlinearities are the unit vectors of the state vector and the constant

chord lengths which prohibit the use of a vanilla Kalman filter. For this, we use a UKF

since it neither requires process or measurement models to be linear nor linearized as in

the case of an EKF. In the UKF framework, the state uncertainty is approximated using a

carefully selected set of sigma points. These sigma points fully capture the state mean and

covariance when modeled as a Gaussian random variable. Through application of process

and measurement models on the sigma points, one can attain significantly better results

compared to alternative KF variations. We leave the details of UKF to the seminal paper

[12] and explain issues specific to our choice of state definition.

The state covariance, denoted as Σx, is a 11 + 7ns square, positive definite matrix where ns

is the number of segments. Sigma points are obtained as Xi = x±Wi where {Wi} are the

columns of
√

Σ̄x obtained through Cholesky decomposition. Σ̄x is the extended covariance

matrix which is obtained as

Σ̄x =


Σx 0 0

0 Σc 0

0 0 Σ̄z

 (7.76)

where the diagonal block matrices are state, process and measurement covariances from left

to right. Σ̄z is a square matrix of size 7ns and includes the measurement noise uncertainties

for each knot in the state vector.

145

The blocks of Σ̄x corresponding to b,v, ri and ρi hold their corresponding uncertainties

which are in the Euclidean space. However, the uncertainties of ĝ and t̂i are represented

as 3D rotation vectors [28]. This choice of representation prevents rank deficiency of the

covariance matrix. In sigma point generation, mean and covariance calculation steps, these

elements have to be handled properly. The summation and difference operations for unit

vectors is explained in the previous section (Equ. 7.60) The mean of a set of unit vectors,

{â}, is [28]

ˆ̄a = argmin
α̂

∑
{â}

â× α̂. (7.77)

The innovation of UKF does not respect the constant distance constraints, `i, between

adjacent knots. We also want to keep the the position of the root segment, r0, fixed with

respect to the robot frame along the tunnel axis direction. This can written as r0 · x̂M = 0.

Equality constraints can be realized in two different ways which are pseudo-observation and

projection [58]. The former family of constraints generates a fictitious measurement from

the equality constraint with its uncertainty always 0. The projection approach applies the

constraint directly on the state estimate thus, unlike the former approach, the constraint is

guaranteed to hold. For this reason we prefer latter approach. Furthermore, [58] explains in

detail that, in the UKF context, a nonlinear constraint must be applied to both sigma points

after propagation and the a prior estimate to guarantee that the constraints are satisfied.

The projection function for constant chord length is

p` (ri) = ri + B́(t∗ + ∆t∗)− B́(t∗) (7.78)

where

t∗ = argmin
t

< B́(t),Ki > (7.79)

∆t∗ = argmin
∆t

∣∣∣∣∣∣ri − ri− + B́(t∗ + ∆t)− B́(t∗)
∣∣∣∣∣∣

2

− `i. (7.80)

146

Here, the projection function translates the knot position parallel to the centerline (at each t)

such that its Euclidean distance from the preceding knot equals the constant chord distance.

Starting from the knots adjacent to the root knot, each knot is slid this way one at a time.

It should be noted that there are infinitely many translations that will bring a knot to the

required distance. This particular approach constrains the direction towards which each

knot must be translated respecting the shape of the centerline. Furthermore, the Euclidean

distance of the slid knot from the centerline does not change, preventing artificially increasing

the state uncertainty.

7.5.5 Robot State

Although we do not explicitly include the robot state in the UKF, it is indirectly estimated

along with the local map. The position of the root segment, which is also the origin of

local map frame, is constrained by the UKF as explained in the previous section. Hence

−r0 is the robot position in the Velodyne frame. Furthermore, roll and pitch angles can

be inferred from ĝ and yaw from the difference between x̂B, x̂L pair. Finally, corresponding

uncertainties of these variables can be extracted from the state covariance to obtain robot

state uncertainty.

7.6 Experimental Results

In this section, we report on the experiments that we performed inside a penstock in Center

Hill Dam, TN. We compare this approach with our work explained in the previous chapter to

demonstrate how the new formulation and filtering mechanisms improve robustness around

critical regions such at the top of the penstock. This penstock has a diameter of ∼ 5 meters

and is about 70 meters long. We could experiment only along certain parts of the penstock

due to an on-going construction on the site. Because of this we could not collect data around

the turbine area which is the lower part of a penstock. The data we present is from the

horizontal and inclined sections of the tunnel.

147

Figure 7.7: The system diagram of the estimator. In this chapter we explaine only the
components directly related to the proposed improvements.

We used our custom-designed platform, which is explained in Sec. 3.2.4 equipped with a

3D lidar and an IMU. Fig. 7.7 shows the system diagram some components of which are

explained in the previous sections. Our algorithms are implemented in ROS, optimized for

real-time performance and uses less than a single core. Since our tests were conducted in

confined space, we do not have ground truth data for comparison. A tunnel reconstruction

that shows PSGC geometry also means that the state is estimated accurately since the robot

pose is a obtained through inverting map parameters.

Our previous work follows a similar approach and reconstructs the tunnel by fitting segments.

However, it does not impose any constraints between segments and also only uses the point

curvature to weight the reliability of point cloud data. This often results in segments either

far from their neighboring segment hence does not preserve continuity. Also when the robot

flies in non-cylindrical regions, segments may end up at angles off by 90 degrees compared

to neighbor segments. Two cases where the previous approach fails are shown in Fig. 7.8. In

these figures, the robot is close to the gate where the tunnel cross-section is not cylindrical.

We compare also our results with the filtering enabled and disabled. Fig. 7.9 shows two cases

where the current method solely using the optimizer with filtering and outlier elimination are

both disabled. In this case the results are almost the same as our previous work. However

as in Fig. 7.10, after enabling the filtering, the current method performs successfully both

when the PSGC assumption is violated or holds.

148

Figure 7.8: These RViz snapshots show failure of the approach in 6 failing while hovering
close to the gate where the circular cross-section assumption does not hold. (a) Orientation
of some segments are estimated wrong and the spacing between segments are not uniform.
(b) Since the first segment is estimated wrong, the fitting process is early terminated.

149

Figure 7.9: These RViz snapshots show failure of the current approach while the robot is
hovering at the same region as in Fig. 7.8. Here, we excluded Watson distributions from the
optimizer and disabled outlier elimination to demonstrate their effects.

150

Figure 7.10: Two cases showing that the current method performs successfully when the
robot is hovering close to the gate where the previous method and this method with the
filtering disabled fails. The second snapshot also show the map along the inclined section of
the tunnel.

151

Fig. 7.11-7.12 show the estimated tunnel radii as interpolated using a Bernstein polynomial

with its knots being the individual segment radii. The first figure plots only a subset

of centerline radii for clarity (at 0.7 seconds intervals) while the second figure shows the

complete radii trajectory of the centerline curve with shading. The three axes of these

figures are the time, signed centerline line integral and radius. The second term is obtained

as

B́L(0→ 1)− B́L(0→ t∗) (7.81)

where

B́L(a→ b) =

∫ b

a

∥∥∥∥∥dB́L(t)

dt

∣∣∣∣
t=τ

∥∥∥∥∥ dτ. (7.82)

and t∗ is the index of the point along the centerline curve closest to body frame origin, i.e.

B́L(OB) (Equ. 7.9). This offset centers the plots around the body frame center. The plots

show the radius estimates for ±10 meters.

The radius estimate is very smooth from the beginning of the flight until 70th second and

after 120th second until the end of the flight. In between, the robot is very close to the

gate where the piecewise-smooth-generalized-cylinder (PSGC) assumption fails resulting in

very noisy segment estimates. However, it should be noted that the noisy estimates are

constrained to less than a third of the whole centerline closer to the gate (around +10

meters). The radii of the remaining sections of the local map are almost not affected at all.

This is basically due to the smoothing effect of Bézier curve. This is very important, because

the robot is located at Curve Length = 0 in these plots where the centerline (which also

means the local map) estimate is not adversely affected neither the robot state. The period

where the radius estimate is noisy approximately corresponds to the period in between the

75th and 105th seconds in the video attachment.

The estimated radii is close to 3 meters which is the actual diameter of the tunnel as we

learned from the facility engineers. At the beginning and end of the flight, some regions are

152

shown to have a smaller radius. These sections correspond to the region around the scroll

case which has a converging conical shape. Since we do not have the engineering drawings

of the whole structure, we cannot make a ground truth comparison.

In Fig. 7.13 we show the uncertainty of the results presented in the previous figures. Rather

than variance, we plot the standard deviation along the z-axes since the variances are very

small making visualization harder. The regions of high uncertainty are shown with peaks

corresponding to the same regions where the radius estimate diverges from the ground truth

value. These results are encouraging since by simply checking the radius estimate uncer-

tainty, the robot can decide whether the tunnel shape agrees with the PSGC assumption.

In Fig. 7.14, we show the inclination estimate over time and along the local map axis. There

are two dominant regions which correspond to the horizontal and inclined sections of the

tunnel. These are marked with blue and green colors respectively while some regions are

omitted since the inclination estimate is very noisy. The latter regions correspond to the

sections of the penstock where the PSGC assumption does not hold. The ground truth values

for these two regions are 0 and 30 degrees. Our estimates are in close match with these values

for most of the flight. It should be noted that the inclination and radius estimates both fail

over the same regions as can be compared with the other plots.

The slightly slant transition lines at 50th and 130th seconds are due to the gradual inclina-

tion change of the penstock. From these lines, it is possible to infer whether the robot is

completely in the horizontal or inclined section of a tunnel. The blue region between 70th

and 110th seconds at CenterLine = 0 corresponds to when the robot is hovering close to the

gate at the upstream terminus of the penstock. This section of the tunnel is approximately

a rectangular prism with its inclination close to zero . Although our inclination estimate is

oscillatory, it performs acceptably well.

Finally, Fig. 7.15 shows the positional uncertainty of the centerline. This figure is generated

by interpolating the information at a set of points along the centerline using the weights of the

underlying Bernstein polynomial. The uncertainty ellipses represent the point covariances

estimated as the inverse of weighted informations. It can be seen that, close to the region

153

Figure 7.11: These plots show the radius estimate along the centerline estimate of the tunnel
as a function of time and line integral of centerline estimate. The time spacing between each
curve in the plot is 0.7 seconds deliberately kept large for clarity.

154

Figure 7.12: These plots show the radius estimate along the centerline estimate of the tunnel
as a function of time and line integral of centerline estimate color coded as a function of
estimated tunnel radius. This plots shows the complete radius estimate history.

155

Figure 7.13: These plots show the uncertainty in the radius estimates along the centerline
of the tunnel as a function of time and line integral of centerline estimate color coded as
a function of estimator uncertainty. The regions where the uncertainty peaks match with
the regions where the radius estimate diverges from the ground truth value as shown in the
other figures.

with clutter (standing experiment crew), the uncertainty is higher. Also, the uncertainty

along the lateral direction is much less compared to the vertical direction since the onboard

lidar takes more measurements from the sides.

156

Figure 7.14: These plots show the inclination of the local map tunnel axis over the course
of a flight. The vertical axis is the s coordinate along the centerline. Color shows the angle
between the centerline tanget at a given s coordinate and the ground plane (i.e. plane
normal to gravity vector). Light blue that covers almost haft the plot corresponds to ∼ 0
degrees and green corresponds to ∼ 30 degrees. The blue and green plateaus correspond to
the horizontal and inclined sections of the tunnel with ground truth inclination angles of 0
and 30 degrees. Empty regions are where the inclination estimate is inaccurate and, hence,
are not plotted.

157

Figure 7.15: Positional uncertainties at a sparse set of points on the centerline.

158

Chapter 8

A Benchmark Comparison of

Estimators

Flying robots employed in real-life scenarios require accuracy in order to achieve stable

and robust flight. This requirement gains further importance when human operators are

involved as in the case of infrastructure inspection. However, challenging environmental

conditions such as mist, dust kicked up due to propeller downwash, reflective wet tunnel

surfaces, and lack of sufficient illumination limits the choice of sensors for indoor inspection

scenarios. Lidars and IMUs are the two sensors that suffer the least from these adverse

conditions so range-based odometry algorithms are popular choices for state estimation in

similar scenarios. Furthermore, equipped with these sensors, a MAV can build detailed maps

of the environment while localizing itself without the requirement of external localization

from motion capture or GPS.

Due to the highly unstable dynamics of multi-robot aerial vehicles, a failure in the state

estimation can abruptly destabilize the robot causing it to crash. Hence, the performance

of state estimation can be assessed qualitatively through successful autonomous flight of

an MAV. On the other hand, it is not clear which range-based estimator proposed in the

previous chapters perform better. Furthermore, solely comparing two range-based estimators

159

might not necessarily reveal inaccuracies common to range-based approaches due to certain

fundamental limitations of this class of estimators. For this reason, we also provide state

estimates using a vision-only approach.

This chapter presents range-visual-inertial datasets collected onboard an MAV flying inside

a penstock at Center Hill Dam, TN and performance comparisons of the two range-based es-

timators presented in Chap. 6 and Chap. 7, and a vision-based estimator details of which are

explained in the subsequent sections. The datasets contain 3D point clouds, synchronized

images from four color cameras and IMU measurements. The only source of illumination

is the onboard LEDs that are placed around each camera. In order to provide artificial

landmarks to the vision-based state estimation algorithm, we placed about a hundred April-

Tag [81] fiducial markers along the tunnel. These tags are easily recognizable features that

also guarantee loop closure once a tag is successfully recognized. The datasets include state

estimates obtained using the TagSLAM library [135] as a comparate for benchmarking the

proposed range-based estimators. TagSLAM builds a sparse map of AprilTags and provides

6 DoF state estimates using cameras only.

8.1 Dataset Collection

We collected 5 datasets by flying the DJI platform semi-autonomously along one of the

penstocks at Center Hill Dam, TN. The horizontal and inclined sections of this penstock are

both longer than 40 meters and 3 meters in diameter. The inclination is 30 degrees. Along

the horizontal section, we placed about a hundred AprilTags for ground-truth. Due to the

steep inclination it was unsafe to climb along the inclination and place tags. Because of this,

we could place tags only along the horizontal section.

There are various AprilTag families which differ by the number of pixels used to encode

tag ids. Among 4 × 4, 5 × 5 and 6 × 6 tag families (Fig. 8.1), the latter with 1 pixel

border width is recommended by the author of [81] since the tag detector software performs

significantly better with this tag family from different viewing angles and farther distances.

160

Figure 8.1: Sample AprilTag fiducial markers of sizes 4 × 4, 5 × 5 and 6 × 6 with 1 pixels
border thickness.

We printed 16.5× 16.5 cm2 AprilTags on water resistant, matte, transparent, sticky papers.

The material choice for the printed tags is of great importance due to the wet experiment

environment. Also, a glossy surface finish would cause specular reflection of light from the

onboard power LEDs and cause the AprilTag detector to fail while a camera sees a tag at

a high incident angle. These tags are sticked onto white 0.25′′ thick ABS sheets in order to

ensure that the printed tags do not bend. In order to facilitate placing the tags, we screwed

permanent neodymium magnets on all four corners of the ABS sheets. This way, tags snap

on the metallic tunnel walls and their positions can be easily adjusted.

Before collecting the datasets, we calibrate the four onboard cameras and the IMU using

the multi-camera calibration toolbox 1 of KumarRobotics and TagSLAM. The calibration is

performed for both intrinsics and extrinsic parameters. Intrinsic calibration of each camera is

performed using the multi-camera calibration toolbox, and the relative poses of each camera

is estimated using TagSLAM.

Since we use wide angle lenses (∼ 135o), we prefer the equidistant distortion model [47]

which models fish-eye lenses more accurately than the radial-tangential distortion model.

In particular, the OpenCV implementation of the latter model almost never converges for

the lenses we use. The viewing cones of adjacent cameras intersect with sufficient overlap

required for calibration at a distance longer than a few meters since adjacent cameras are
1https://github.com/KumarRobotics/multicam_calibration

161

https://github.com/KumarRobotics/multicam_calibration

Figure 8.2: We use more than a dozen AprilTags randomly sprinkled on one side of the
tunnel as the camera calibration pattern.

approximately oriented relatively at a right angle. Hence, in order to perform reliable

calibration, a calibration plate larger than that can be passed through the small access

hatch of the penstock would be required. As a solution to this, we use more than a dozen

AptilTags randomly sprinkled on one side of the tunnel in such that adjacent cameras always

see multiple tags at a certain distance. A sample photo of the calibration pattern is shown

in Fig. 8.2.

On two sides of the tunnel, we placed two groups of tags that are visible from the onboard

cameras while flying. The first group of tags are placed carefully along the curve that

we marked using a laser level. A sample photo of these tags is shown in Fig. 8.3. The

laser level projects a beam across the tunnel to establish a common level which we use to

align this group of tags as can be seen in Fig. 8.4. Furthermore, adjacent tags are placed

at a fixed distance with the help of a measure stick. These constraints are implemented

as pose-graph factors in TagSLAM to improve the accuracy of the final map. Through

setting the plane normal of the former constraint anti-parallel to the gravity vector, we

162

Figure 8.3: First group of tags are placed along a curve marked with the help of self-
leveling laser level. Also, adjacent tags are placed as a fixed distance. These constraints are
implemented as pose-graph factors in TagSLAM.

also estimate the gravity vector direction in the map frame. As will be explained in the

subsequent sections, this greatly facilitates aligning coordinate frames of vision and range

based estimators. The performance of TagSLAM with only tags aligned along this curve is

not sufficient for estimator benchmarking purpose. For this, we randomly placed a second

group of tags around the former group of tags. A photo of the tunnel with all the tags

placed is shown in Fig. 8.5.

8.2 Map Reconstruction and Localization using AprilTags

TagSLAM requires tags and cameras to be attached to rigid bodies. Depending on the

application, the relative poses of tags and cameras with respect to the bodies that they are

attached to can be static or dynamic. Static bodies are not included in the optimization

process other than providing constraints to it. A good example to this is the onboard cameras

that are externally calibrated and attached to the abstract robot rigid body. Bodies can also

163

Figure 8.4: (Top) The self-leveling laser level is attached at the tunnel surface from its
magnetic mount. (Bottom) The top edges of the first group of tags are aligned with the
laser beam.

164

Figure 8.5: A photo of the penstock with both the aligned and randomly placed tags.

165

Figure 8.6: Snapshots from the RViz visualization tool that show the mapping results. This
figure includes only the tags that are planed along a plane with the help of laser level.

be static or dynamic. Pose of a dynamic object is estimated on every frame with the most

recent pose being used as the initialization point by the optimizer. For example, the robot

body together with all the cameras attached to it is a single dynamic object. TagSLAM

estimates a pose series for such objects. On the other hand, poses of static objects such as

map landmarks are refined every time they are observed.

A nice feature of TagSLAM is that static objects that are defined previously can be imported.

These static objects might be manually generated or obtained as a result of another run.

We exploit this nice feature of TagSLAM by first running it on the datasets to generate a

map of tags. In the second run, the optimized tag poses are fed to TagSLAM. Since tags are

already localized with low uncertainties in the previous run, in the second run, TagSLAM

only estimates the poses of dynamic objects with higher accuracy. We call these two different

types of runs as mapping and localization modes. Fig. 8.6 and Fig. 8.7 are snapshots from

RViz visualization tool showing the mapping results. The former figure shows only the tags

placed along the plane marked with a laser level, and the latter figure shows all the tags.

166

Figure 8.7: Snapshots from the RViz visualization tool that show the mapping results from
different views.

8.2.1 Map Quality

In order to assess the quality of the map reconstructed by TagSLAM we use various metrics.

These are the pixel projections errors at each frame, the pairwise distance between adjacent

tags and the distance of each tags to the plane marked using a laser level. The former

error is simply the distance in pixels between the corner of a detected tag and projection

of its estimated position onto image plane. In Fig. 8.8 we present pixel projection errors

for different maps. The average error is ∼ 0.25 pixels which we believe is a demonstrative

evidence of the map quality.

Tags placed along a plane are also placed at a specific distance from their adjacent tags with

the help of a measure stick. In Fig. 8.9 we show tag-to-tag distance for different maps to be

a little over 1 m. Although we intended to place tags with 1 meter of separation, we later

noticed that the measure stick was longer by a few centimeters. However, as can be seen

from these plots, TagSLAM, consistently, estimates very close values for each map which is

a strong evidence for accuracy of the map. Secondly, we present in Fig. 8.10 the distance

of each tag from the most-likely plane fit to them. The mean and maximum tag-to-plane

distances are less than 1.5 cm and 6 cm respectively. It should be noted that a slight error

167

Figure 8.8: These plots show the pixel projection errors for maps reconstructed using four
different datasets. The dark green curves are the median values. The red shades show the
minimum and maximum projection errors, and the green shades show the standard deviation
of the error. The two dashed lines show the overall mean error and the standard deviation
of the total error.

168

in the plane normal would cause a great displacement at distal points since the length of the

plane is more than 20 meters (e.g. 1o error in orientation causes 17.5 cm distance at 10 m).

Figure 8.9: Distances between adjacent tags placed along a plane for different maps recon-
structed by TagSLAM.

169

Figure 8.10: Distances between tags placed along a plane and the plane fit to these tags for
different maps reconstructed by TagSLAM.

170

8.3 Coordinate Frame Transformations

The range-based estimators estimate the robot pose with respect to a local coordinate frame

that varies over time. The origin of this coordinate frame is the point along the centerline

closest to the 3D robot position and the frame triad is calculated based on the centerline

tangent at its origin. On the other hand, TagSLAM estimates the robot pose as well as all the

tag poses with respect to a specific tag defined as the origin. In order to compare the results,

robot poses estimated by both type of estimators are transformed into a common coordinate

frame. In particular, we transform the TagSLAM pose estimates into their corresponding

local frames. This requires construction of the centerline from the tag poses.

TagSLAM estimates the orientations of the AprilTags along with their positions. Since the

tag slabs abut against the tunnel walls at all their four corners thanks to the magnets,

surface normals of tags can be used to estimate the centerline. The set of points calculated

as the intersection of the normals of opposite tag pairs in the least-squares sense can then be

used as the control points of a 3D Bernstein polynomial. The side of each tag is determined

manually (i.e. right/left side of the tunnel). Opposite of a given tag is simply the closest

tag in the opposite side of the tunnel in the Euclidean sense. The least-squares solution, p̃,

is calculated as

p̃ = S−1C (8.1)

where

S =
∑
i

n̂in̂
>
i − I (8.2)

C =
∑
i

(
n̂in̂

>
i − I

)
pi (8.3)

where the summations run over all the points, pi, and their surface normals, n̂i, included

in the solution. Fig. 8.11 shows the centerlines approximated as 3D Bernstein polynomials

with their control points estimated using the least-squares method.

171

Figure 8.11: Centerline approximated as a 3D Bernstein polynomial. Its control points are
the intersection of opposite tag normals.

Although it is not directly related to pose estimation, in Fig. 8.12 we show the estimated radii

along the centerline. Similar to the centerline, radii is also interpolated using a Bernstein

polynomial of degree 2. The first component is the coordinate of the projection of tags onto

the approximated centerline. The coordinate of a point along the centerline is defined as

the line integral from the beginning of the curve up to the point. The second component is

the distance of a given tag from its projection onto the centerline, i.e. the local radius. As

can be seen in these plots, the radius of the tunnel is not constant. It gets smaller closer

to the scroll case around the turbine blades and increase towards the inclination. Although

we do not have ground truth data, we can say that this is consistent with the actual tunnel

shape. The radius estimates fluctuate after the 20th meter around where the tunnel starts

to include upwards. We believe this is due to the sparsity of tags.

172

Figure 8.12: These plots show the distance of each map tag to the centerline approximated
as a Bernstein polynomial, i.e. local radius. The red line is the continuous approximation
of the tunnel radius with the individual radius estimates as its control points.

173

8.4 Comparison of Pose Estimates

In this section we present results for the three estimators which are the range-based methods

presented in Chap. 6, Chap. 7 and the vision-based TagSLAM. The lateral and vertical

positions as well as the full orientations are compared for 4 different datasets in Fig. 8.13-

8.14-8.15-8.16. Range-based and the vision-based estimators are respectively filtering and

optimization based approaches. The effect of this fundamental difference can be observed

in the results. Especially, the difference in position estimates of two groups of approaches

at peak points highlights the smoothing effect of the filtering. Due to the slow response of

the filter, the discrepancy between results increase at most of the peak points. On the other

hand, TagSLAM suffers from glitches since it does not inherently implement a smoothing

mechanism. Except for these effects, it can be seen from the plots that the different in

position is less than 10 cm on average.

Taking results of TagSLAM as the reference point, the two range-based approaches have com-

parable performance as seen in Fig. 8.13-8.14-8.15-8.16. The approach of Chap. 7 (Fig. 8.13),

however, performs the poorest in yaw estimation with errors as large as 4 degrees. Such

large errors occur mostly while to robot is close to the ground (taking off or landing). Due

to the narrow field of view of the lidar, the central segment is estimated erroneously with

a large translational offset from its neighboring segments causing the centerline twist and

bend abruptly. This in turn affects the local coordinate frame, L(s = 0), which is used to

infer the robot orientation.

Although the performance of the range-based approaches are similar in the plots, the method

of Chap. 7 exhibits better performance when the tunnel circularity assumption fails. Its

superiority is not only in the state estimation but it also constructs a more accurate local

map. We refer to the experimental results of Chap. 7 for the details. The significance

of this would be appreciated if map quality requirement for the obstacle avoidance is also

considered. In conclusion, it can be argued that the method of Chap. 7 is a higher performing

estimator and a better choice for the confined penstock setting.

174

Figure 8.13: Comparison of the range-based approaches and TagSLAM on dataset #1.

175

Figure 8.14: Comparison of the range-based approaches and TagSLAM on dataset #2.

176

Figure 8.15: Comparison of the range-based approaches and TagSLAM on dataset #3.

177

Figure 8.16: Comparison of the range-based approaches and TagSLAM on dataset #4.

178

Chapter 9

Conclusion

9.1 Key Contributions

In this this thesis, we study the state estimation and autonomous navigation of MAVs inside

penstocks and tunnel-like, long, axisymmetric indoor environments. To our knowledge,

ours is the only study in the field robotics literature that studies MAV autonomy in such

environments.

The main contributions of the thesis are in Chap. 4-8. The first semi-autonomous flight

inside a penstock is realized in Chap. 4 using an off-the-shelf MAV equipped with a minimal

set of sensors including a single 2D laser scanner, an IMU and a low-end single-core proces-

sor. State estimation is performed using a Rao-Blackwellized particle filter which models

the robot position along the long tunnel axis using particles. In Chap. 5, we present an

extension to this work where a sensor fusion algorithm that uses multiple 2D laser scanners

and cameras are utilized. The proposed fusion algorithm integrates optical flow information

from the cameras to estimate the robot position along the tunnel axis. This chapter also

proposes a 3D, offline visual inspection technique. In Chap. 6, we present an alternative

state estimation and local mapping system that uses an onboard 3D lidar with a detailed

measurement model. Unlike the first two approaches, this system does not require a prior

179

map of the tunnel. Chap. 7 improves the approach of the previous chapter by imposing

roto-translational constraints on the local map segments. Local map which, in Chap. 6, is

constructed from independently estimated segments, are estimated using a holistic approach

that uses all the segments improving the estimator robustness. Lastly, Chap. 8 provides

datasets and benchmarks the performance of the last two approaches against a vision-based

state estimator that relies on AprilTags. We note that the although we present results

from only penstocks and university corridors, the techniques developed in this work can

be extended to work in other tunnel-like environments such as mine shafts, highway tun-

nels. Furthermore, the proposed methods can be also be easily deployed on other robotics

platforms such as wheeled or tracked vehicles with minor modifications.

9.2 Limitations

The techniques developed in the thesis assume a particular shape for the testing environment.

Since the major concern of this work, in particular, is to fly inside penstocks, the environment

is modeled as a cylindrical tube with variations in its radius, different bending profiles

and smooth surfaces. In Chap. 7 we refer to such an environment as a piecewise-smooth-

generalized-cylinder . Although we claim that the proposed methods can be used in other

similar environments such as mine shafts, highway tunnels, building corridors etc., direct

application of these methods as is might not perform as well as in penstocks. The proposed

estimators can cope with slight deviations in the geometry of the environment from the

assumed model. While the state definitions and the Kalman filter formulations can be

directly used, point cloud processing algorithms and measurement models might require

significant modifications. For example, the methods in Chap. 6-7 fit circular segments which

would fail when flying inside building corridors with rectangular cross-sections. Furthermore,

the same group of methods might fail inside mine shafts with irregular surfaces since the

surface normal estimates will be much different than their expected directions failing the

smooth surface assumption. Also environments with multiple branches would violate the

PSGC assumption and will require a more sophisticated tunnel model.

180

9.3 Future Work

The approach detailed in Chap. 5 of this dissertation requires a prior map although, theoret-

ically, the map can be estimated using the point cloud measurements from the two onboard

2D laser scanners. The proposed Kalman filter can be reformulated to also estimate the

cylinder parameters where the parameters are inferred from the raw point cloud using the

5-point cylinder estimation approach which is referred to in Sec. 5.1. Since 2D laser scanners

are cheaper and lighter compared to 3D lidars such as the one used in Chap. 6-7, inspec-

tion of penstocks dimensions of which are not available would be possible with smaller and

cheaper platforms.

The optical flow-based axial velocity estimation method explained Chap. 5 can be used along

with the method of Chap. 7 to estimate the full-state of the platform. However, the flow-

based approach relies on the accuracy of the range-based position and yaw estimation which

might in certain cases be inaccurate. Appending the state vector of our Kalman filter with

image feature locations, and updating these and the local map in a tightly-coupled filtering

framework would improve the robustness.

As stated in the previous section, the assumptions about the environment might be restric-

tive for application of the proposed methods in different settings. Among possible improve-

ments, amending the segment estimation algorithms to handle non-circular cross-sections

might not be as valuable since this would only require the formulation and a robust imple-

mentation of a model fitting algorithm. On the other hand, it would be more valuable and

interesting to improve the centerline model to handle tunnels with branching off and merg-

ing. Also parametric approximate reconstruction of rough surfaces such as in mine shafts

and a centerline model that can handle non-symmetric cross-sections would be a significant

contribution.

Since this is primarily a field robotics research, testing different sensor modalities especially

for estimating the axial position of the platform would be interesting. For example, Ultra-

Wideband (UWB) sensors can be used in combination with cameras for this purpose. When

181

the camera field of view is obscured by dust, mist particles, the onboard UWB sensors can

still provide accurate distance measurement from a base station. Finally, surfaces of well-

maintained sections of penstocks almost do not have any visual texture prohibiting optical

flow calculation. The platform can be equipped with a squirt gun filled with non-corrosive

dye to artificially paint visual texture on the tunnel surface.

182

Bibliography

[1] R. E. Kalman, “New Approach to Linear Filtering and Prediction Problems”, J. Basic

Eng., vol. 82, no. 1, 35–45 (1960) (11 pages), 1960.

[2] G. Watson, “Equatorial distributions on a sphere”, Biometrika, vol. 52, no. 1/2,

pp. 193–201, 1965.

[3] G. J. Agin and T. O. Binford, “Computer description of curved objects”, in Pro-

ceedings of the 3rd international joint conference on Artificial intelligence, Morgan

Kaufmann Publishers Inc., 1973, pp. 629–640.

[4] C. Bingham, “An antipodally symmetric distribution on the sphere”, The Annals of

Statistics, pp. 1201–1225, 1974.

[5] M. A. Fischler and R. C. Bolles, “Random sample consensus: a paradigm for model

fitting with applications to image analysis and automated cartography”, Commun.

ACM, vol. 24, no. 6, pp. 381–395, Jun. 1981.

[6] R. Brooks, “Solving the Find-Path Problem by Good Representation of Free Space”,

IEEE Trans. Syst., Man, Cybern., vol. 13, no. 3, pp. 190–197, 1983.

[7] J. R. Magnus, “On Differentiating Eigenvalues and Eigenvectors”, Econom. Theory,

vol. 1, no. 02, pp. 179–191, Aug. 1985.

[8] K. Shoemake, “Animating rotation with quaternion curves”, ACM SIGGRAPH Com-

put. Graph., vol. 19, no. 3, pp. 245–254, 1985.

[9] C. Harris and M. Stephens, “A Combined Corner and Edge Detector”, in Procedings

of the Alvey Vision Conference 1988, 1988, pp. 23.1–23.6.

183

[10] N. J. Gordon, D. J. Salmond, and A. F. M. Smith, “Novel approach to nonlinear/non-

gaussian bayesian state estimation”, IEE Proceedings F - Radar and Signal Processing,

vol. 140, no. 2, pp. 107–113, Apr. 1993.

[11] Z. Zhang, R. Deriche, O. Faugeras, and Q.-T. Luong, “A robust technique for match-

ing two uncalibrated images through the recovery of the unknown epipolar geometry”,

Artificial Intelligence, vol. 78, no. 1, pp. 87–119, 1995, Special Volume on Computer

Vision.

[12] S. J. Julier and J. K. Uhlmann, “New extension of the kalman filter to nonlinear

systems”, in Signal processing, sensor fusion, and target recognition VI, International

Society for Optics and Photonics, vol. 3068, 1997, pp. 182–193.

[13] F. Lu and E. Milios, “Globally consistent range scan alignment for environment map-

ping”, Auton. Robots, vol. 4, no. 4, pp. 333–349, Oct. 1997.

[14] P. Torr and A. Zisserman, “Robust computation and parametrization of multiple

view relations”, in Sixth International Conference on Computer Vision (IEEE Cat.

No.98CH36271), Jan. 1998, pp. 727–732.

[15] Z. Zhang, “Determining the epipolar geometry and its uncertainty: A review”, Inter-

national journal of computer vision, vol. 27, no. 2, pp. 161–195, 1998.

[16] A. Fitzgibbon, M. Pilu, and R. B. Fisher, “Direct least square fitting of ellipses”,

IEEE Trans. Pattern Anal. Mach. Intell., vol. 21, no. 5, pp. 476–480, May 1999.

[17] K. V. Mardia and P. E. Jupp, Directional Statistics [Hardcover]. J. Wiley, 1999,

p. 350, isbn: 0471953334.

[18] S. Thrun, D. Fox, W. Burgard, F. Dellaert, D. Fox, W. Burgard, and S. Thrun,

“Monte Carlo localization for mobile robots”, Proc. 1999 IEEE Int. Conf. Robot.

Autom. (Cat. No.99CH36288C), vol. 2, no. May, pp. 1322–1328, 1999.

[19] A. Doucet, N. D. Freitas, K. Murphy, and Stuart Russell, “Rao-Blackwellised Particle

Filtering for Dynamic Bayesian Networks”, UAI’00 Proc. Sixt. Conf. Uncertain. Artif.

Intell., pp. 176–183, 2000.

184

[20] J. Y. Bouguet, “Pyramidal implementation of the affine lucas kanade feature tracker

description of the algorithm”, Tech. Rep., 2001. [Online]. Available: http://robots.

stanford.edu/cs223b04/algo%7B%5C_%7Daffine%7B%5C_%7Dtracking.pdf.

[21] T. Chaperon and F. Goulette, “Extracting cylinders in full 3d data using a random

sampling method and the gaussian image”, 2001.

[22] M. W. M. G. Dissanayake, P. Newman, S. Clark, H. F. Durrant-Whyte, and M.

Csorba, “A solution to the simultaneous localization and map building (SLAM) prob-

lem”, IEEE Transactions on Robotics and Automation, vol. 17, no. 3, pp. 229–241,

Jun. 2001.

[23] S. Rusinkiewicz and M. Levoy, “Efficient variants of the ICP algorithm”, English, in

Proceedings Third International Conference on 3-D Digital Imaging and Modeling,

IEEE Comput. Soc, 2001, pp. 145–152.

[24] M. Antone and S. Teller, “Scalable extrinsic calibration of omni-directional image

networks”, International Journal of Computer Vision, vol. 49, no. 2-3, pp. 143–174,

2002.

[25] M. Montemerlo, S. Thrun, D. Koller, and B. Wegbreit, “FastSLAM: A factored solu-

tion to the simultaneous localization and mapping problem”, in Proceeding Eighteenth

Natl. Conf. Artif. Intell., vol. 68, 2002, pp. 593–598.

[26] S. Thrun, “Robotic Mapping: A Survey”, Science (80-.)., vol. 298, no. February,

pp. 1–35, 2002.

[27] A. Ansar and K. Daniilidis, “Linear pose estimation from points or lines”, IEEE

Transactions on Pattern Analysis and Machine Intelligence, vol. 25, no. 5, pp. 578–

589, 2003.

[28] E. Kraft, “A quaternion-based unscented Kalman filter for orientation tracking”, in

Proc. 6th Int. Conf. Inf. Fusion, FUSION 2003, vol. 1, 2003, pp. 47–54.

[29] M. A. Paskin, “Thin Junction Tree Filters for Simultaneous Localization and Map-

ping”, Int. Jt. Conf. Artif. Intell., 2003.

185

http://robots.stanford.edu/cs223b04/algo%7B%5C_%7Daffine%7B%5C_%7Dtracking.pdf
http://robots.stanford.edu/cs223b04/algo%7B%5C_%7Daffine%7B%5C_%7Dtracking.pdf

[30] K. Low, “Linear Least-squares Optimization for Point-to-plane ICP Surface Registra-

tion”, low.report04, Tech. Rep. February, 2004, pp. 2–4. [Online]. Available: https://

www.iscs.nus.edu.sg/%7B%5C%%7D7B%7B~%7D%7B%5C%%7D7Dlowkl/publications/

lowk%7B%5C_%7Dpoint-to-plane%7B%5C_%7Dicp%7B%5C_%7Dtechrep.pdf.

[31] D. G. Lowe, “Distinctive Image Features from Scale-Invariant Keypoints”, Int. J.

Comput. Vis., vol. 60, no. 2, pp. 91–110, 2004.

[32] D. Nistér, “An efficient solution to the five-point relative pose problem”, IEEE trans-

actions on pattern analysis and machine intelligence, vol. 26, no. 6, pp. 0756–777,

2004.

[33] D. Nistér, O. Naroditsky, and J. Bergen, “Visual odometry”, in Proceedings of the 2004

IEEE Computer Society Conference on Computer Vision and Pattern Recognition,

2004. CVPR 2004., Ieee, vol. 1, 2004, pp. I–I.

[34] T. Rabbani and F. Van Den Heuvel, “3d industrial reconstruction by fitting csg

models to a combination of images and point clouds”, International Archives of the

Photogrammetry, Remote Sensing and Spatial Information Sciences (ISPRS), vol. 35,

no. B5, p. 2, 2004.

[35] S. Thrun, Y. Liu, D. Koller, A. Y. Ng, Z. Ghahramani, and H. Durrant-Whyte,

“Simultaneous localization and mapping with sparse extended information filters”, in

Int. J. Rob. Res., vol. 23, 2004, pp. 693–716.

[36] C. Estrada, J. Neira, and J. D. Tardós, “Hierarchical SLAM: Real-time accurate map-

ping of large environments”, IEEE Transactions on Robotics, vol. 21, no. 4, pp. 588–

596, 2005.

[37] U. Frese, P. Larsson, and T. Duckett, “A multilevel relaxation algorithm for simul-

taneous localization and mapping”, IEEE Trans. Robot., vol. 21, no. 2, pp. 196–207,

2005.

[38] S. Se, D. G. Lowe, and J. J. Little, “Vision-based global localization and mapping for

mobile robots”, IEEE Trans. Robot., vol. 21, no. 3, pp. 364–375, Jun. 2005.

[39] S. Thrun, W. Burgard, and D. Fox, Probabilistic robotics. MIT press, 2005.

186

https://www.iscs.nus.edu.sg/%7B%5C%%7D7B%7B~%7D%7B%5C%%7D7Dlowkl/publications/lowk%7B%5C_%7Dpoint-to-plane%7B%5C_%7Dicp%7B%5C_%7Dtechrep.pdf
https://www.iscs.nus.edu.sg/%7B%5C%%7D7B%7B~%7D%7B%5C%%7D7Dlowkl/publications/lowk%7B%5C_%7Dpoint-to-plane%7B%5C_%7Dicp%7B%5C_%7Dtechrep.pdf
https://www.iscs.nus.edu.sg/%7B%5C%%7D7B%7B~%7D%7B%5C%%7D7Dlowkl/publications/lowk%7B%5C_%7Dpoint-to-plane%7B%5C_%7Dicp%7B%5C_%7Dtechrep.pdf

[40] T. Bailey and H. Durrant-Whyte, “Simultaneous localization and mapping (SLAM):

Part I”, IEEE Robotics and Automation Magazine, vol. 13, no. 3, pp. 108–117, Jun.

2006.

[41] ——, “Simultaneous localization and mapping (SLAM): part II”, IEEE Robot. Autom.

Mag., vol. 13, no. 3, pp. 108–117, Sep. 2006.

[42] H. Bay, T. Tuytelaars, and L. Van Gool, “SURF: Speeded Up Robust Features”, Eur.

Conf. Comput. Vis., vol. 3951, pp. 404–417, 2006.

[43] D. M. Cole and P. M. Newman, “Using laser range data for 3D SLAM in outdoor

environments”, IEEE Int. Conf. Robot. Autom., no. May, pp. 1556–1563, 2006.

[44] F. Dellaert and M. Kaess, “Square Root SAM: Simultaneous Localization and Map-

ping via Square Root Information Smoothing”, The International Journal of Robotics

Research, vol. 25, no. 12, pp. 1181–1203, Dec. 2006.

[45] U. Frese, “Treemap: An O(log) Algorithm for Simultaneous Localization and Map-

ping”, Auton. Robots, vol. 21, no. 2, pp. 103–122, 2006.

[46] C. de Granville, J. Southerland, and A. H. Fagg, “Learning grasp affordances through

human demonstration”, in Proceedings of the International Conference on Develop-

ment and Learning (ICDL’06), 2006.

[47] J. Kannala and S. S. Brandt, “A generic camera model and calibration method for

conventional, wide-angle, and fish-eye lenses”, IEEE transactions on pattern analysis

and machine intelligence, vol. 28, no. 8, pp. 1335–1340, 2006.

[48] S. M. LaValle, Planning Algorithms. Cambridge, U.K.: Cambridge University Press,

2006, pp. 1–826, isbn: 9780511546877. doi: 10.1017/CBO9780511546877.

[49] D. Lichtblau, “Cylinders through five points: Complex and real enumerative geom-

etry”, in International Workshop on Automated Deduction in Geometry, Springer,

2006, pp. 80–97.

[50] E. Olson, J. Leonard, and S. Teller, “Fast iterative alignment of pose graphs with

poor initial estimates”, in Proceedings - IEEE International Conference on Robotics

and Automation, vol. 2006, 2006, pp. 2262–2269.

187

https://doi.org/10.1017/CBO9780511546877

[51] E. Rosten and T. Drummond, “Machine Learning for High Speed Corner Detection”,

Computer Vision – ECCV 2006, vol. 1, pp. 430–443, 2006.

[52] A. Censi, “An accurate closed-form estimate of ICP’s covariance”, in Proc. - IEEE

Int. Conf. Robot. Autom., IEEE, Apr. 2007, pp. 3167–3172.

[53] ——, “On achievable accuracy for range-finder localization”, Proc. - IEEE Int. Conf.

Robot. Autom., pp. 4170–4175, Apr. 2007.

[54] L. A. Clemente, A. J. Davison, I. D. Reid, J. Neira, and J. D. Tardós, “Mapping

Large Loops with a Single Hand-Held Camera”, in Robot. Sci. Syst., 2007.

[55] A. J. Davison, I. D. Reid, N. D. Molton, and O. Stasse, “MonoSLAM: real-time single

camera SLAM.”, IEEE Trans. Pattern Anal. Mach. Intell., vol. 29, no. 6, pp. 1052–

1067, 2007.

[56] G. Grisetti, C. Stachniss, and W. Burgard, “Improved Techniques for Grid Mapping

With Rao-Blackwellized Particle Filters”, IEEE Trans. Robot., vol. 23, no. 1, pp. 34–

46, Feb. 2007.

[57] G. Grisetti, C. Stachniss, S. Grzonka, and W. Burgard, “A tree parameterization for

efficiently computing maximum likelihood maps using gradient descent”, Rss, p. 8,

2007.

[58] S. J. Julier and J. J. LaViola, “On kalman filtering with nonlinear equality con-

straints”, IEEE Transactions on Signal Processing, vol. 55, no. 6, pp. 2774–2784,

2007.

[59] G. Klein and D. Murray, “Parallel tracking and mapping for small AR workspaces”,

in 2007 6th IEEE ACM Int. Symp. Mix. Augment. Reality, ISMAR, 2007.

[60] M. Magnusson, A. Lilienthal, and T. Duckett, “Scan registration for autonomous

mining vehicles using 3D-NDT”, J. F. Robot., vol. 24, no. 10, pp. 803–827, 2007.

[61] M. Montemerlo and S. Thrun, “FastSLAM 2.0”, Springer Tracts Adv. Robot., vol. 27,

pp. 63–90, 2007.

[62] T. Tuytelaars and K. Mikolajczyk, “Local Invariant Feature Detectors: A Survey”,

Found. Trends®Comput. Graph. Vis., vol. 3, no. 3, pp. 177–280, 2007.

188

[63] M. R. Walter, R. M. Eustice, and J. J. Leonard, “Exactly sparse extended information

filters for feature-based SLAM”, International Journal of Robotics Research, vol. 26,

no. 4, pp. 335–359, 2007.

[64] A. Censi, “An ICP variant using a point-to-line metric”, in Proc. - IEEE Int. Conf.

Robot. Autom., IEEE, May 2008, pp. 19–25.

[65] M. Kaess, A. Ranganathan, and F. Dellaert, “iSAM: Incremental Smoothing and

Mapping”, IEEE Transactions on Robotics, vol. 24, no. 6, pp. 1365–1378, Dec. 2008.

[66] L. M. Paz, J. D. Tardos, and J. Neira, “Divide and Conquer: EKF SLAM in O(n)”,

IEEE Trans. Robot., vol. 24, no. 5, pp. 1107–1120, 2008.

[67] T. Tuytelaars, K. Mikolajczyk, et al., “Local invariant feature detectors: A survey”,

Foundations and trends® in computer graphics and vision, vol. 3, no. 3, pp. 177–280,

2008.

[68] S. Grzonka, G. Grisetti, and W. Burgard, “Towards a navigation system for au-

tonomous indoor flying”, in 2009 IEEE International Conference on Robotics and

Automation, May 2009, pp. 2878–2883.

[69] E. B. E. B. E. B. Olson, “Real-time correlative scan matching”, in 2009 IEEE Int.

Conf. Robot. Autom., IEEE, May 2009, pp. 4387–4393.

[70] G. Grisetti, R. Kummerle, C. Stachniss, and W. Burgard, “A tutorial on graph-based

SLAM”, IEEE Intell. Transp. Syst. Mag., vol. 2, no. 4, pp. 31–43, 2010.

[71] G. Grisetti, R. Kümmerle, C. Stachniss, U. Frese, and C. Hertzberg, “Hierarchical

Optimization on Manifolds for Online 2D and 3D Mapping”, in IEEE International

Conference on Robotics and Automation, 2010, pp. 273–278.

[72] G. Guennebaud, B. Jacob, et al., Eigen v3, http://eigen.tuxfamily.org, 2010.

[73] B. Kitt, A. Geiger, and H. Lategahn, “Visual odometry based on stereo image se-

quences with ransac-based outlier rejection scheme”, in 2010 ieee intelligent vehicles

symposium, IEEE, 2010, pp. 486–492.

[74] N. Michael, D. Mellinger, Q. Lindsey, and V. Kumar, “The GRASP multiple micro-

UAV testbed”, IEEE Robot. Autom. Mag., vol. 17, no. 3, pp. 56–65, Sep. 2010.

189

[75] E. Rosten, R. Porter, and T. Drummond, “Faster and better: A machine learning

approach to corner detection”, IEEE Trans. Pattern Anal. Mach. Intell., vol. 32,

no. 1, pp. 105–119, 2010.

[76] R. B. Rusu, “Semantic 3D Object Maps for Everyday Manipulation in Human Living

Environments”, PhD thesis, TECHNISCHE UNIVERSITÄTMÜNCHEN, Nov. 2010.

[Online]. Available: http://link.springer.com/10.1007/s13218- 010- 0059-

6%20http://link.springer.com/article/10.1007/s13218-010-0059-6.

[77] P. Hansen, H. Alismail, B. Browning, and P. Rander, “Stereo visual odometry for

pipe mapping”, in IEEE Int. Conf. Intell. Robot. Syst., 2011, pp. 4020–4025.

[78] P. Hansen, H. Alismail, P. Rander, and B. Browning, “Monocular visual odometry

for robot localization in LNG pipes”, in Proc. - IEEE Int. Conf. Robot. Autom., 2011,

pp. 3111–3116.

[79] R. Kummerle, G. Grisetti, H. Strasdat, K. Konolige, andW. Burgard, “G2o: A general

framework for graph optimization”, English, in 2011 IEEE International Conference

on Robotics and Automation, IEEE, May 2011, pp. 3607–3613.

[80] D. Mellinger and V. Kumar, “Minimum snap trajectory generation and control for

quadrotors”, in Proc. - IEEE Int. Conf. Robot. Autom., 2011, pp. 2520–2525.

[81] E. Olson, “Apriltag: A robust and flexible visual fiducial system”, in 2011 IEEE

International Conference on Robotics and Automation, IEEE, 2011, pp. 3400–3407.

[82] R. B. Rusu and S. Cousins, “3D is here: point cloud library”, IEEE Int. Conf. Robot.

Autom., pp. 1–4, May 2011.

[83] D. Scaramuzza and F. Fraundorfer, “Visual odometry [tutorial]”, IEEE robotics &

automation magazine, vol. 18, no. 4, pp. 80–92, 2011.

[84] S. Shen, N. Michael, and V. Kumar, “Autonomous multi-floor indoor navigation with

a computationally constrained MAV”, in Proc. - IEEE Int. Conf. Robot. Autom.,

IEEE, May 2011, pp. 20–25.

190

http://link.springer.com/10.1007/s13218-010-0059-6%20http://link.springer.com/article/10.1007/s13218-010-0059-6
http://link.springer.com/10.1007/s13218-010-0059-6%20http://link.springer.com/article/10.1007/s13218-010-0059-6

[85] S. Weiss, D. Scaramuzza, and R. Siegwart, “Monocular-SLAM-based navigation for

autonomous micro helicopters in GPS-denied environments”, J. F. Robot., vol. 28,

no. 6, pp. 854–874, Nov. 2011.

[86] a. Bachrach, S. Prentice, R. He, P. Henry, a. S. Huang, M. Krainin, D. Maturana,

D. Fox, and N. Roy, “Estimation, planning, and mapping for autonomous flight using

an RGB-D camera in GPS-denied environments”, Int. J. Rob. Res., vol. 31, no. 11,

pp. 1320–1343, 2012.

[87] M. Burri, J. Nikolic, C. Hürzeler, G. Caprari, C. Hurzeler, G. Caprari, R. Siegwart, C.

Hürzeler, G. Caprari, C. Hurzeler, G. Caprari, and R. Siegwart, “Aerial service robots

for visual inspection of thermal power plant boiler systems”, Appl. Robot. Power Ind.

(CARPI), 2012 2nd Int. Conf., pp. 70–75, 2012.

[88] A. Geiger, P. Lenz, and R. Urtasun, “Are we ready for Autonomous Driving? The

KITTI Vision Benchmark Suite”, Comput. Vis. Pattern Recognition), pp. 3354–3361,

2012.

[89] J. Glover, G. Bradski, and R. B. Rusu, “Monte carlo pose estimation with quaternion

kernels and the bingham distribution”, in Robotics: science and systems, vol. 7, 2012,

p. 97.

[90] D. Holz, S. Holzer, R. B. Rusu, and S. Behnke, “Real-Time Plane Segmentation Using

RGB-D Cameras”, in Robot Soccer World Cup XV. Rob. 2011, vol. 7416 LNCS, 2012,

pp. 306–317.

[91] M. Kaess, H. Johannsson, R. Roberts, V. Ila, J. J. Leonard, and F. Dellaert, “ISAM2:

Incremental smoothing and mapping using the Bayes tree”, Int. J. Rob. Res., vol. 31,

no. 2, pp. 216–235, 2012.

[92] H. Strasdat, J. M. M. Montiel, and A. J. Davison, “Visual SLAM: Why filter?”, Image

Vis. Comput., vol. 30, no. 2, pp. 65–77, 2012.

[93] J. Sturm, N. Engelhard, F. Endres, W. Burgard, and D. Cremers, “A benchmark for

the evaluation of RGB-D SLAM systems”, in IEEE Int. Conf. Intell. Robot. Syst.,

2012, pp. 573–580.

191

[94] T. Tomic, K. Schmid, P. Lutz, A. Domel, M. Kassecker, E. Mair, I. Grixa, F. Ruess,

M. Suppa, and D. Burschka, “Toward a fully autonomous UAV: Research platform

for indoor and outdoor urban search and rescue”, IEEE Robot. Autom. Mag., vol. 19,

no. 3, pp. 46–56, Sep. 2012.

[95] A. J. B. Trevor, J. G. Rogers, and H. I. Christensen, “Planar surface SLAM with 3D

and 2D sensors”, in Proc. - IEEE Int. Conf. Robot. Autom., 2012, pp. 3041–3048.

[96] A. Geiger, P. Lenz, C. Stiller, and R. Urtasun, “Vision meets robotics: The KITTI

dataset”, Int. J. Rob. Res., vol. 32, no. 11, pp. 1231–1237, 2013.

[97] J. Glover and S. Popovic, “Bingham procrustean alignment for object detection in

clutter”, in Intelligent Robots and Systems (IROS), 2013 IEEE/RSJ International

Conference on, IEEE, 2013, pp. 2158–2165.

[98] K. Kawashima, S. Kanai, and H. Date, “Automatic recognition of piping system

from laser scanned point clouds using normal-based region growing”, ISPRS Ann

Photogramm Remote Sens Spatial Inf Sci, II-5 W, vol. 2, pp. 121–126, 2013.

[99] G. Kurz, I. Gilitschenski, S. Julier, and U. D. Hanebeck, “Recursive estimation of

orientation based on the bingham distribution”, in Information Fusion (FUSION),

2013 16th International Conference on, IEEE, 2013, pp. 1487–1494.

[100] T. Lee, M. Leok, and N. H. Mcclamroch, “Nonlinear robust tracking control of a

quadrotor UAV on SE(3)”, Asian J. Control, vol. 15, no. 2, pp. 391–408, 2013.

[101] J. Nikolic, M. Burri, J. Rehder, S. Leutenegger, C. Huerzeler, and R. Siegwart, “A

UAV system for inspection of industrial facilities”, in IEEE Aerospace Conference

Proceedings, 2013.

[102] M. Pivtoraiko, D. Mellinger, and V. Kumar, “Incremental micro-UAV motion replan-

ning for exploring unknown environments”, in Proc. - IEEE Int. Conf. Robot. Autom.,

IEEE, May 2013, pp. 2452–2458.

[103] C. Richter, A. Bry, and N. Roy, “Polynomial Trajectory Planning for Aggressive

Quadrotor Flight in Dense Indoor Environments”, Isrr, no. Isrr, pp. 1–16, 2013.

192

[104] S. Sra and D. Karp, “The multivariate watson distribution: Maximum-likelihood es-

timation and other aspects”, Journal of Multivariate Analysis, vol. 114, pp. 256–269,

2013.

[105] Y. Taguchi, Y.-D. Jian, S. Ramalingam, and C. Feng, “Point-Plane SLAM for Hand-

Held 3D Sensors”, in Robot. Autom. (ICRA); 2013 IEEE Int. Conf., 2013, pp. 5182–

5189.

[106] J. Engel, T. Schöps, D. Cremers, T. Sch, and D. Cremers, “LSD-SLAM: Large-Scale

Direct Monocular SLAM”, Eccv, vol. 8690 LNCS, no. PART 2, pp. 1–16, 2014.

[107] C. Forster, M. Pizzoli, and D. Scaramuzza, “SVO: Fast semi-direct monocular visual

odometry”, in 2014 IEEE Int. Conf. Robot. Autom., IEEE, May 2014, pp. 15–22.

[108] I. Gilitschenski, G. Kurz, S. J. Julier, and U. D. Hanebeck, “A new probability dis-

tribution for simultaneous representation of uncertain position and orientation”, in

Information Fusion (FUSION), 2014 17th International Conference on, IEEE, 2014,

pp. 1–7.

[109] J. Glover and L. P. Kaelbling, “Tracking the spin on a ping pong ball with the quater-

nion bingham filter”, in Robotics and Automation (ICRA), 2014 IEEE International

Conference on, IEEE, 2014, pp. 4133–4140.

[110] A. Ortiz, F. Bonnin-Pascual, and E. Garcia-Fidalgo, “Vessel Inspection: A Micro-

Aerial Vehicle-based Approach”, J. Intell. Robot. Syst., vol. 76, no. 1, pp. 151–167,

Sep. 2014.

[111] T. Özaslan, S. Shen, Y. Mulgaonkar, N. Michael, and V. Kumar, “Inspection of

penstocks and featureless tunnel-like environments using micro UAVs”, in Springer

Tracts Adv. Robot., vol. 105, 2014, pp. 123–136.

[112] A. K. Patil, S. S. Park, P. Holi, and Y. H. Chai, “Automatic pipeline generation

by the sequential segmentation and skelton construction of point cloud”, Advanced

Science and Technology Letters, vol. 67, no. 2014, pp. 43–47, 2014.

193

[113] S. Shen, “Autonomous Navigation in Complex Indoor and Outdoor Environments

With Micro Aerial Vehicles”, PhD thesis, University of Pennsylvania, 2014, isbn:

9780874216561. doi: 10.1007/s13398-014-0173-7.2.

[114] R. Zlot and M. Bosse, “Efficient Large-Scale 3D Mobile Mapping and Surface Recon-

struction of an Underground Mine”, in, Springer, Berlin, Heidelberg, 2014, pp. 479–

493. doi: 10.1007/978-3-642-40686-7_32.

[115] ——, “Efficient Large-scale Three-dimensional Mobile Mapping for Underground

Mines”, Journal of Field Robotics, vol. 31, no. 5, pp. 758–779, Sep. 2014.

[116] J. Das, G. Cross, C. Qu, A. Makineni, P. Tokekar, Y. Mulgaonkar, and V. Kumar,

“Devices, systems, and methods for automated monitoring enabling precision agri-

culture”, Autom. Sci. Eng. (CASE), 2015 IEEE Int. Conf., pp. 462–469, 2015.

[117] P. Gohl, M. Burri, S. Omari, J. Rehder, J. Nikolic, M. Achtelik, and R. Siegwart,

“Towards autonomous mine inspection”, in Proc. 3rd Int. Conf. Appl. Robot. Power

Ind. CARPI 2014, 2015.

[118] P. Hansen, H. Alismail, P. Rander, and B. Browning, “Visual mapping for natural

gas pipe inspection”, The International Journal of Robotics Research, vol. 34(4-5),

no. 4-5, pp. 532–558, Nov. 2015.

[119] T. Li, M. Bolic, and P. M. Djuric, “Resampling methods for particle filtering: Classi-

fication, implementation, and strategies”, IEEE Signal Processing Magazine, vol. 32,

no. 3, pp. 70–86, May 2015.

[120] G. Loianno, J. Thomas, and V. Kumar, “Cooperative localization and mapping of

MAVs using RGB-D sensors”, in Proc. - IEEE Int. Conf. Robot. Autom., vol. 2015-

June, 2015, pp. 4021–4028.

[121] R. Mur-Artal, J. M. M. Montiel, and J. D. Tardós, “ORB-SLAM: A Versatile and Ac-

curate Monocular SLAM System”, IEEE TRANSACTIONS ON ROBOTICS, vol. 31,

no. 5, 2015.

194

https://doi.org/10.1007/s13398-014-0173-7.2
https://doi.org/10.1007/978-3-642-40686-7_32

[122] F. Pomerleau, F. Colas, and R. Siegwart, “A Review of Point Cloud Registration

Algorithms for Mobile Robotics”, Found. Trends Robot., vol. 4, no. 1, pp. 1–104,

2015.

[123] J. Zhang and S. Singh, “Visual-lidar odometry and mapping: Low-drift, robust, and

fast”, in Robot. Autom. (ICRA), 2015 . . ., IEEE, May 2015, pp. 2174–2181.

[124] L. Busé, A. Galligo, and J. Zhang, “Extraction of cylinders and cones from minimal

point sets”, Graphical Models, vol. 86, pp. 1–12, 2016.

[125] G. S. Chirikjian and A. B. Kyatkin, Harmonic Analysis for Engineers and Applied

Scientists: Updated and Expanded Edition. Courier Dover Publications, 2016.

[126] I. Gilitschenski, G. Kurz, S. J. Julier, and U. D. Hanebeck, “Unscented orientation

estimation based on the bingham distribution”, IEEE Transactions on Automatic

Control, vol. 61, no. 1, pp. 172–177, 2016.

[127] T. Özaslan, K. Mohta, J. Keller, Y. Mulgaonkar, C. J. Taylor, V. Kumar, J. M.

Wozencraft, and T. Hood, “Towards fully autonomous visual inspection of dark

featureless dam penstocks using MAVs”, in IEEE Int. Conf. Intell. Robot. Syst.,

vol. 2016-Novem, Oct. 2016, pp. 4998–5005.

[128] J. Thomas, G. Loianno, K. Daniilidis, and V. Kumar, “Visual Servoing of Quadrotors

for Perching by Hanging From Cylindrical Objects”, IEEE Robotics and Automation

Letters, vol. 1, no. 1, pp. 57–64, 2016.

[129] H. Alismail, M. Kaess, B. Browning, and S. Lucey, “Direct Visual Odometry in Low

Light Using Binary Descriptors”, IEEE Robotics and Automation Letters, vol. 2, no. 2,

pp. 444–451, 2017.

[130] T. Ozaslan, G. Loianno, J. Keller, C. J. Taylor, V. Kumar, J. M. Wozencraft, and

T. Hood, “Autonomous Navigation and Mapping for Inspection of Penstocks and

Tunnels With MAVs”, IEEE Robot. Autom. Lett., vol. 2, no. 3, pp. 1740–1747, Jul.

2017.

195

[131] T. Ozaslan, G. Loianno, J. Keller, C. J. Taylor, V. Kumar, J. M. Wozencraft, and

T. Hood, “Autonomous Navigation and Mapping for Inspection of Penstocks and

Tunnels With MAVs”, IEEE Robot. Autom. Lett., vol. 2, no. 3, pp. 1740–1747, Jul.

2017.

[132] R. A. Srivatsan, M. Xu, N. Zevallos, and H. Choset, “Bingham distribution-based

linear filter for online pose estimation”, in Robotics: Science and Systems, 2017.

[133] J. Zhang and S. Singh, “Enabling aggressive motion estimation at low-drift and ac-

curate mapping in real-time”, in Proceedings - IEEE International Conference on

Robotics and Automation, 2017, pp. 5051–5058.

[134] ——, “Low-drift and real-time lidar odometry and mapping”, Auton. Robots, vol. 41,

no. 2, pp. 401–416, Feb. 2017.

[135] B. Pfrommer and K. Daniilidis, “Tagslam: Robust slam with fiducial markers”, arXiv

preprint arXiv:1910.00679, 2019.

[136] R. F. Salas-Moreno, B. Glocker, P. H. J. Kelly, and A. J. Davison, “Dense Planar

SLAM”, in Mixed and Augmented Reality (ISMAR), 2014 IEEE International Sym-

posium on.

[137] R. Van der Merwe and E. Wan, “The square-root unscented Kalman filter for state

and parameter-estimation”, in 2001 IEEE Int. Conf. Acoust. Speech, Signal Process.

Proc. (Cat. No.01CH37221), vol. 6, IEEE, pp. 3461–3464.

196

	Acknowledgments
	Abstract
	List of Figures
	Introduction
	Motivation
	Problem Statement
	Research Problems
	Range-Based SLAM
	Sensor Fusion
	Tunnel Mapping

	Related Work
	Inspection Robotics
	Simultaneous Localization and Mapping
	Range-Based Methods
	Vision-Based Methods

	Preliminaries
	Experimentation Environment
	Experiment Platforms
	Platform Requirements
	Pelican
	KHex
	DJI Hexrotor

	Localization and Control Using a Single 2D Lidar
	Map and Frame Definitions
	Map as a List of Joints
	Reference Frame Definitions

	Filtering-Based Localization
	Robot State
	Rao-Blackwellized Particle Filter
	Process Model
	Measurement Model

	2D Laser Processing
	Yaw Estimation
	An ICP Algorithm for Position Estimation

	Particle Weighing and Resampling
	Particle Weighing
	Particle Resampling

	Experimental Results

	State Estimation Using a Heterogeneous Sensor Suit
	A Discussion on The Requirement of a Prior Map
	Nomenclature and Definitions
	Sensor Fusion for State Estimation
	Robot State
	Process Model
	Fusing Multiple Sensory Information

	Range-Based Partial State Estimation
	Iterative Least-Squares Formulation
	Uncertainty Estimation

	Vision-Based Axial Speed Estimation
	Full State vs Axial Speed Estimation
	Image Enhancement
	Feature Extraction and Tracking

	Visual Odometry
	Panoramic Image Generation
	Experimental Results

	Local Mapping and Estimation with a 3D Lidar
	Local Map Representation and Robot State
	System Design
	3D Point Cloud Preprocessing
	Surface Normal and Uncertainty Estimation

	Point Cloud Segmentation and Surface Fitting
	Local Frame Initialization
	Segment Initialization
	Segment Refinement

	Uncertainty Estimation of Local Frames
	Robot State and Its Uncertainty
	A Discussion on Estimator Robustness
	Obstacle Avoidance and Shared Control
	Experimental Results

	Modeling Tunnels as Smooth Generalized Cylinders
	Point Cloud Processing
	Local Map as a Generalized Cylinder
	Map Knots
	BézierInterpolation

	Distributions on Sd-1
	Literature Review on Spherical Distributions
	Watson Distribution Formulation
	Watson Distribution Fitting

	Knot Estimation
	Optimizer Definition

	Filter Design
	State Vector
	Process Model
	Measurement Model
	A Constrained UKF on a Nonlinear Manifold
	Robot State

	Experimental Results

	A Benchmark Comparison of Estimators
	Dataset Collection
	Map Reconstruction and Localization using AprilTags
	Map Quality

	Coordinate Frame Transformations
	Comparison of Pose Estimates

	Conclusion
	Key Contributions
	Limitations
	Future Work

