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Abstract—This paper addresses the issue of controller perfor-
mance degradation in cargo unmanned aerial vehicles (UAVs)
due to varying payload amounts during a continuous flight.
Linear controllers, such as PID, are often favored for non-
aggressive UAV flights due to their simplicity and satisfactory
performance compared to more complex alternatives. However,
Vertical Takeoff and Landing (VTOL) cargo UAVs, while in
operation, need to accommodate payloads of different masses,
altering the flight dynamics. To maintain trajectories with an ac-
ceptable error margin, controller parameters, otherwise assumed
constant, must be updated. In this study, we employ the meta-
heuristic Gray Wolf Optimization technique to precompute PID
parameter sets for a range of payloads in a 36-dimensional space,
storing them in a look-up table (LUT). As the payload changes,
we update cascade PID controller gains by interpolating LUT
values. The proposed technique’s performance is demonstrated
through simulations involving various trajectories and payloads.

Index Terms—Unmanned Aerial Vehicle, Cargo Quadcopter,
Meta-heuristic Optimization, Gray Wolf Optimization, Cascade
Controller

I. INTRODUCTION

In recent years, there has been a growing interest in Vertical
Takeoff and Landing (VTOL) Unmanned Aerial Vehicles
(UAVs) owing to their manufacturability, agility, autonomous
flight capabilities, and diverse payload carrying options [1]–
[3]. UAVs present an alternative mode for transporting pay-
loads over short to moderate distances, complementing tra-
ditional land and sea vehicles. For instance, the transporta-
tion of time-critical emergency supplies to search and rescue
operations in a crisis area using UAVs may emerge as the
sole alternative. This is particularly relevant when highways
and railways are partially or completely demolished, rendering
traditional transportation modes ineffective. Hence UAVs offer
a valuable alternative for cargo transportation in regions where
other means of transportation face hindrances, whether partial
or complete.

Cargo UAVs operating continuously face the challenge of
accommodating payloads with varying geometries and masses,
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consequently influencing the overall linear and rotational
inertia of the entire system, along with changes in drag
coefficients. The type of connection between a UAV and its
payload, whether non-rigid or rigid, further impacts the system
dynamics. For instance, a payload connected via a string
introduces oscillating relative motion, disturbing UAV motion
with fluctuating forces. In contrast, a rigidly connected payload
directly alters the mass and rotational inertia, often treated
not as a disturbance but as an additional mass. The dynamic
coupling nature between the UAV and payload necessitates
adaptive control strategies for the controller to effectively
follow a given trajectory with limited error margins.

Linear controllers, like PID, are commonly chosen for
UAV flights due to their simplicity and effectiveness. The
extensive literature available on this specific application and in
various robotic domains, along with their independence from
underlying system complexities, contributes to their popularity.
However, for a non-trivial system like a 6 degrees-of-freedom
(DoF) UAV, the number of parameters becomes impractical
for manual tuning. This challenge is especially prominent in
UAVs employing a cascaded control scheme for attitude and
position controls, where the parameter space expands to 36
dimensions as in our case.

In this study, we investigate a scenario in which a cargo
UAV navigates through various trajectories while experiencing
changing mass conditions during the flight. The onboard PID
controller, upon detecting a change in the overall system
mass, dynamically updates its parameters by referencing a
precomputed look-up table (LUT) of parameters optimized
offline using a meta-heuristic gray wolf optimization approach
for different additional masses attributed to payload variations.
In instances where a perfect fit is not feasible, we employ
linear interpolation between the nearest points in the LUT.
Simulation results reveal that PID parameters optimized for
unloaded flight result in substantial offsets between desired
and actual trajectories. Through the implementation of adap-
tive PID gains, the errors are contained within an acceptable
envelope, ensuring safe and accurate flights.

The contributions of this paper are twofold: (1) we introduce
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a novel controller design that dynamically adapts to changes
in the mass and rotational inertia of a UAV in real-time during
operation, (2) we utilize the GWO technique to precompute a
large set of cascade PID control gains for various mass and
rotational inertia values and store them in a fast LUT, enabling
quick updates without the need for slow optimization steps
during payload transportation.

II. LITERATURE REVIEW

Payload transportation using autonomous UAVs requires
careful design of onboard controllers adaptive to disturbances
induced by the relative motion of non-rigidly connected pay-
loads, or changes in the overall mass and rotational inertia
due of the system to rigidly connected cargo [4]. Ensuring
the safety of both the UAV and the cargo is contingent on
the system’s ability to follow commanded trajectories with
acceptable error margins.

Several studies in the literature realize payload transporta-
tion using multi-rotor UAVs [5]–[7] while majority of the
related literature focuses carrying payloads rigidly attached
to the a UAV [8]. In an alternative approach payloads are
connected to the UAV through string allowing the payload to
oscillate during flight reducing the coupling between the UAV
and payload dynamics [9]. Cable suspended payloads cause
oscillating disturbance on the UAVs and different approaches
such [10]–[12] study this in details. Payload transportation
with the help of extra mechanisms such as robot manipulators
[13], [14] gripers [15], and magnetic grippers [16] are also
studied by researchers.

In the work Son et. al. [17], the transport of a payload con-
nected to a multi-rotor with a cable where a sequential linear
quadratic solver along with the model predictive controller
was used to calculate the optimal trajectory in real-time. In the
work of Xie et al. [18] two different drones were used to carry
the payload connected to a rope and formation control based
on the leader follower approach. However, it is acknowledged
that controlling multi-robot systems is challenging, primarily
due to the additional complexity introduced by the coordina-
tion of multiple platforms.

Li et al. [19] employed the perception-constrained model
predictive control (PCMPC) method as their controller. Ac-
cording to this method, the payload attached to the quad-
copter operates in a manner that ensures it remains within
the camera’s field of view horizontally, ensuring continuous
visibility. In a similar study Tang et al. [20] showed that
they controlled the payload attached to the quadrotor with a
cable under aggressive flight conditions. The control of the
system is provided with a closed-loop geometric controller.
Miyazaki et al. [15] in their study, while the multi-rotor is
in motion, controlling the oscillation of the gripper can pick
the payload at a point and take it to the target point and
place it. Swing-suppression control method was implemented
in the study . In these systems, the mass of the system
remains constant while external disturbances oscillate due to
the swinging motion of the payload. Unlike our work, these
studies primarily focus on systems with constant mass and

rotational inertia, concentrating solely on the control of a UAV
under oscillating loads.

Liang et al. [21] designed an enhanced coupling hierarchical
control system based on energy minimization to control the
position of a single quadcopter and dampen the oscillation of
a swinging payload connected to the quadcopter with a cable.
In a similar study [22], control of a quadcopter carrying a
suspended load and the absorption of the swing were achieved
using the exponential regulation control method. Due to the
coupled and underactuated dynamic structure of the system,
designing this controller posed challenges, leading to the
division of the controller into two parts: the inner loop and the
outer loop. The inner loop controls the attitude of the UAV,
while the outer loop controls the position of the UAV and the
swing of the payload, which aligns with the strategy adopted
in our work.

Slabber and Jordan [23] conducted simulation studies to
investigate the control of a multirotor while a payload attached
to a cable affects the dynamics of the multirotor during
movement, especially when the length of the cable and the
mass of the suspended payload are unknown. They employed
the linear quadratic Gaussian (LQG) method along with a
notch filter to mitigate the effects caused by the vibration
and swinging motion of the load. The mass of the load was
determined using the recursive least square method, and the
length of the string was determined by a specialized sine wave
estimator. State estimation of the load was achieved using
vision-based optimal control (LQG) based on the obtained
parameters of the payload. Our work differs from [23] in the
availability of the mass information for the attached payload.

Similar to our approach, Wehbeh et al. [24] rigidly con-
nected the payload to the drones using rigid bars and applied
model predictive control (MPC). A comparison was made
between centralized and decentralized MPC using a system
consisting of four drones. Unlike our assumption on availabil-
ity of force sensors for detecting the payload mass, Sanalitro et
al. [25] employed control algorithms to ensure system control
without using force or torque sensors. The cascade control
method was utilized to apply a control algorithm based on the
unexpected collision interaction scenario.

III. MATHEMATICAL MODEL OF QUADCOPTER

A. Quadcopter Description

As can be seen “Fig. 1”, quadcopter with X configuration
structure has four rotors to generate the necessary thrust forces
and torques. It produces thrust forces that are along the basis
vector −zB where the forces are denotes as F1, F2, F3, and
F4. The forces consist of two pairs, F1, F3 and F2, F4. If
one pair rotates clockwise the other rotates counterclockwise
so the torques are balanced. Rolling, pitching, yawing motions
can be realized by adjusting the speed of appropriate pairs of
propellers.

The origins of the inertial and the body fixed frames are
represented by oI and oB respectively.
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Fig. 1. Definition of inertial and body-fixed frame axes for an x-configuration
quadcopter.

B. Quadcopter Kinematic Model

The structure of a quadcopter is shown in “Fig. 1”. To
describe the dynamics of a quadcopter, we need to define
two reference frames which are the body and the inertial
frames. Physical properties of a quadcopter are measured
with respect to inertial frame or body frame depending on
the formulation. Position and linear velocity are transformed
across different frames by using a rotation matrix. Rotation
matrix is constructed through application of three consecutive
rotations about z, y, and x axes respectively as given below

RI
B =

cθcψ cψsθsϕ− cϕsψ cϕcψsθ + sϕsψ
cθsψ cϕcψ + sθsϕsψ −cψsϕ+ cϕsθsψ
−sθ cθsϕ cθcϕ

 (1)

where c, s are trigonometric functions cosine, sine respec-
tively. RI

B represents a rotation transformation from body to
inertial frame, roll (ϕ), pitch (θ), and yaw (ψ) denote Euler
angles. Roll ϕ, pitch θ, and yaw ψ represent angle of rotation
around x, y and z axes respectively.

The position ζ, linear velocity V , attitude η, angular
velocity ω are all three-vectors and defined as

ζI =

xy
z

 ,V B =

uv
w

 ,ηI =

ϕθ
ψ

 ,ωB =

pq
r

 .
The superscripts represent the frame with respect to which
each vector is defined. In the following sections we drop su-
perscripts unless required. The angular velocity is transformed
from the inertial frame to the body frame by the transformation
matrix T as follows

η̇ = Tω,

ϕ̇θ̇
ψ̇

 =

1 sϕtθ cϕtθ
0 cϕ −sϕ
0 sϕ/cθ cϕ/cθ

pq
r

 (2)

ω = T−1η̇,

pq
r

 =

1 0 −sθ
0 cϕ cθsϕ
0 −sϕ cθcϕ

ϕ̇θ̇
ψ̇

 (3)

where t is the tangent function. The matrix T is invertible if

θ ̸= (2k−1)
π

2
where k ∈ Z. A similar relation can be written

for ζ̇
I

and V B as

ζ̇
I
= RI

BV
B. (4)

Finally first-order terms in I are obtained in terms of respec-
tive terms defined in B as

ẋ = [cθcψ]u+ [cψsθsϕ− cϕsψ]v

+ [cϕcψsθ + sϕsψ]w

ẏ = [cθsψ]u+ [cϕcψ + sθsϕsψ]v

+ [cϕsθsψ − cψsϕ]w

ż = [−sθ]u+ [cθsϕ]v + [cθcϕ]w

ϕ̇ = p+ [sϕtθ]q + [cϕtθ]r

θ̇ = [cϕ]q − [sϕ]r

ψ̇ = [scθsϕ]q + [scθcϕ]r

(5)

C. Quadcopter Dynamic Model

Newton-Euler approach is used in order to obtain the
dynamic model of quadcopter in (6) and (7). In addition,
the dynamic model of quadcopter is obtained and verified by
Euler-Lagrange method. A number of assumptions have been
made to simplify the non-linear dynamic model

• quadcopter body structure is assumed to be rigid,
• quadcopter frame and its mass distribution is symmetrical

about its center of gravity,
• body frame and quadcopter’s center of mass are coinci-

dent,
• rotors of the quadcopter are equivalent,
• the rotors are parallel to zB,
• gyroscopic effects of all rotors and ground effect have

been neglected.

Translational equation of motion of a quadcopter is given as

mζ̈ = mg

00
1

I

−RI
BU1 +RI

BFω (6)

where g and U⊤
1 =

[
0 0 FT

]
are gravitational acceleration

and the total thrust vector generated by the rotors respectively,
FT = F1 + F2 + F3 + F4 is the magnitude of the total
thrust produced by the rotors, F⊤

ω =
[
Fωx Fωy Fωz

]
are

disturbance forces due to wind and other external factors.
Euler’s equation governing the rotational dynamics expressed
in B is given as

UT − τ g + τω = Iω̇ + ω × (Iω) (7)

where U⊤
T =

[
U2 U3 U4

]
is the moments generated

by the propellers, I is the inertial tensor, τ g and τω are
moment vectors for gyroscopic effects due to motors and
moments due to wind affecting on the quadcopter respectively.
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Expanding the equations 6-7 we obtain the following second-
order differential equations for each DoF of the quadcopter
as

ẍ =
−FT
m

[sϕsψ + cϕcψsθ]

ÿ =
FT
m

[sϕcψ − cϕsψsθ]

z̈ = g − FT
m

[cϕcθ]

ϕ̈ =
U2

Ix
+
Iy − Iz
Ix

θ̇ψ̇

θ̈ =
U3

Iy
+
Iz − Ix
Iy

ϕ̇ψ̇

ψ̈ =
U4

Iz
+
Ix − Iy
Iz

ϕ̇θ̇

. (8)

We assume that external disturbances are negligible; therefore,
they do not appear in the above equations. At hover state,
we assume ϕ ≈ 0, θ ≈ 0 which yield the following
approximations [

ϕ̇ θ̇ ψ̇
]⊤ ≈

[
p q r

]⊤[
ẋ ẏ ż

]⊤ ≈
[
u v w

]⊤
D. Linear Time Varying State-Space Model

The state space representation allows for expressing an nth

order system with n first-order differential equations which
simplifies analysis of the respective system. Additionally,
this approach effectively captures input-output relations of
multiple-input-multiple-output system as in our case. Fur-
thermore, modeling time-varying mechanical systems such as
a quadcopter with changing mass and rotational inertia is
possible with the same mathematical framework. The typical
model of such a system is given as

ẋ(t) = A(t)x(t) +B(t)u(t)

y(t) = C(t)x(t) +D(t)u(t)
(9)

where, x(t) is the state vector, u(t) is the control input, y(t)
is the output, and ẋ(t) is the rate of change of the system’s
state. The coefficients of these vectors are the state transition
matrix A(t), the input matrix B(t), the output matrix C(t),
and the feed-forward matrix D(t). In this study, state vector
and control input vector of quadcopter defined as follows (10).

x =


ζ
η
V
ω

 ∈ R12 , u =

[
FT
UT

]
∈ R4 (10)

In its most general form, rate of change of system state is
given as

ẋ = f(x,u) (11)

Expanding (11) gives



ẋ1
ẋ2
ẋ3
ẋ4
ẋ5
ẋ6
ẋ7
ẋ8
ẋ9
ẋ10
ẋ11
ẋ12



=



x7
x8
x9

x10 + x12c(x4)t(x5) + x11s(x4)t(x5)
x11c(x4)− x12s(x4)

x12c(x4)sc(x5) + x11sc(x5)s(x4)

−FT (c(x4)c(x6)s(x5) + s(x4)s(x6))

m
FT (c(x6)s(x4)− c(x4)s(x5)s(x6))

m

g − FT c(x4)c(x5)

m
U2

Ix
+

(Iy − Iz)x11x12
Ix

U3

Iy
+

(−Ix + Iz)x10x12
Iy

U4

Iz
+

(Ix − Iy)x10x11
Iz



(12)

As clearly seen above the trigonometric functions are one of
the sources of non-linearity. We choose hover state as the point
of linearization. The state and input at this equilibrium point
are

xe =


ζ

02×1

ψ
06×1

 ,ue = [
mg
03×1

]
(13)

We use first-order Taylor series expansion to linearize around
the equilibrium state to obtain

f(x,u) =



V
ω

−gθ
gϕ

−FT /m
U2/Ix
U3/Iy
U4/Iz


(14)

Since the quadcopter system has 12 outputs, C = I12x12
is identity matrix. In this study, the controller has no feed-
forward block, so the feed-forward matrix D is equal to the
zero matrix of size [12x4].

In this study, since the different payloads were mounted to
quadcopter, inertia and moment of inertia are not constant.
Matrix B contain m, Ix, Iy and Iz , since these values are
variable, the system is a linear time varying system.

IV. QUADCOPTER CONTROLLER DESIGN

A. Cascade Control

A system that has different response rates in its dynamic
structure is difficult to control with a single control loop.
Cascade controller can be used to control such complex
systems. Cascade controller consists of two stages, the inner
loop and the outer loop. In the cascade controller, the time
constant of the inner loop must be less than the time constant
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Fig. 2. Block diagram of cascade controller.

of the outer loop. The general structure of the cascade control
system is shown in ”Fig. 2”.

Here P1 and P2 consist of the system’s plant. The primary
controller, C1, sets the reference input of the inner loop. Hence
C1 regulates Y1 which is primary controlled variable. The
secondary controller, C2, eliminates the disturbance effects
before Y2 signal it entries to P1.

Fig. 3. The control system of the quadcopter.

The quadcopter control structure, consisting of the position
controller and the attitude controller, is given in “Fig. 3”.
According to the linearized model of the system, the outputs to
be controlled consist of x, y, z, and ψ, and the control inputs
of the system are FT , U2, U3, and U4 respectively. All control
blocks in “Fig. 2” are in a cascade structure. Since there are
2 PID controllers in each block, a total of 12 PID controllers,
that is, 36 PID gain parameters, were used. The velocity
expressions in (15) depend on the acceleration of gravity, not
on the behavior of the four rotors. The outer control loop
cannot be designed in this manner since the outcomes will be
different on the real system.

u̇ = −gθ
v̇ = gϕ

(15)

The trigonometric relationship between angles and transla-
tional velocity is lost after linearization. Since the design is
based on the control model, this non-linearity was applied to
the controller with the inverse relationship in (16) and used in
the conversion block.

ϕd = arcsin(
uy
g
)

θd = −arcsin(ux
g
)

(16)

In this paper, system controller coefficients were determined
using the Ziegler Nichols method and PID tuner.

B. Gray Wolf Optimization Algorithm Based Cascade Control

The gray wolf optimization (GWO) algorithm, a nature-
inspired optimization algorithm, is proposed by imitating
the hunting behavior and social behavior of gray wolves.
The social hierarchy of gray wolves are classified as alpha,
beta, delta and omega. Candidate solutions are obtained by
considering the social hierarchy of wolves. The solutions
with the best fitness values are alpha, beta, delta and omega,
respectively. The search for the best solution takes place in
3 stages: searching for prey, encircling prey, attacking prey.
At the beginning of the optimization process, the gray wolf
searches for its prey (possible solution) by randomly updating
its position. In the encircling prey, gray wolves move in hyper-
cubes (or hyper-spheres) around the best solution obtained.
In the attacking section, alpha, beta and delta types of gray
wolves have a well knowledge of the current location of the
prey. Therefore, the first three best solutions obtained are saved
and the positions of the other wolves are updated based on
their best results. When the cost function converges to a given
point, it approaches the optimal value. Gray wolves attack it
to end the hunting. Pseudo code of the algorithm was given
in “Fig. 4”.

Fig. 4. Pseudo code of gray wolf optimization [26].

As part of this study, integrated absolute error was used as
the fitness function and is given in (17)

fIAE =

∫ t

0

|e(t)| dt (17)

here e(t) represents the error and the aim of optimization is
to minimize the error in the primary and secondary controller
inputs that form the cascade controller. The optimization
process was performed separately for x, y, z, and ψ, taking
into account the computational load. In this work, the fitness
functions of the controllable outputs of the system are given
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as follows (18)

f1 = PID(ex) + PID(eu) + PID(eθ) + PID(eq)

f2 = PID(ey) + PID(ev) + PID(eϕ) + PID(ep)

f3 = PID(ez) + PID(ew)

f4 = PID(eψ) + PID(ew)

(18)

where the expanded version of the PID(ex) controller is
u(t) = Kpex(t)+Kd

d
dtex(t)+Ki

∫ t
0
ex(τ)dτ . The expression

ex(t) = xd(t) − xa(t) indicates the error for the position
x. Similar terms in the controller and error terms above
can be expanded in the same way. In addition, the PID
terms were not written in common brackets as they have
different gain parameters. The purpose of the GWO in the
study is to determine the gain parameters that minimize each
fitness function. The block diagram of the optimized cascade
controller that controls the quadcopter is shown in “Fig. 5”.

Fig. 5. Optimized cascade control system of the quadcopter.

In this study, different amounts of payloads are rigidly
connected to the quadcopter. The gain parameters of the
cascade controller used in the quadcopter control process,
according to different payload, were obtained with the gray
wolf optimization algorithm. Since it is not possible to change
the gain parameters in the real-time application due to the
long optimization time, the quadcopter system controller gain
parameters was optimized according to the total mass values of
0.95, 1, 1.05 and 1.1. The optimized PID gain parameter sets
are automatically selected based on the time-varying payload
values supplied to the quadcopter. A linear interpolation based
lookup table of the parameters was created according to the
payload values used in the relevant ranges. Linear interpolation
is given as follow (19)

a = a1 +
b− b1
b2 − b1

(a2 − a1) (19)

where a, a1, a2, b, b1, and b2 points are shown in “Fig. 6”.
To increase the performance of the controller, 36 PID

parameters were optimized for specific payload values. As a
result, optimized gain parameters were used according to the
changing amount of payload.

Fig. 6. Linear interpolation.

V. SIMULATION RESULTS

A simulation study of the payload system rigidly connected
on the quadcopter was carried out in two different trajectories.
The first trajectory is in a helical shape as seen in “Fig. 7”, and
cascade and GWO-cascade controllers were applied to control
the quadcopter system.

Fig. 7. Trajectories followed by the quadcopter payload system with different
controllers applied.

The deviation of the quadcopter’s position was calculated
based on the distance between the reference point and the
actual point and displayed in diagram “Fig. 8”. Then, the
total error amount was calculated according to IAE and it was
found to be 20.9 m for the cascade controller and 2.474 m
for the GWO-cascade controller. These results show that the
performance of the controller was improved by about 88.1%.

Orientation errors occur while the quadcopter follows the
trajectory. The difference between the reference orientation
and the actual orientation results in the orientation error. In
order to determine this difference, the reference Euler angles
and the actual Euler angles were converted into axis angle
representation. The amount of deviation in orientation was
calculated by performing dot product between the reference
and the actual vectors obtained from the axis angle in “Fig. 9”.
While the total error in the orientation according to IAE with
the application of the cascade controller was 0.7805 rad, this
result changed to 0.143 rad in the GWO-cascade controller.
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Fig. 8. Comparison of controller performances according to position error.

These results show that the performance of the controller could
be improved by approx. 81.6%.

Fig. 9. Comparison of controller performances according to orientation error.

The second trajectory consists of continuous and discon-
tinuous parts as seen in “Fig. 10”, and cascade and GWO-
cascade controllers were applied to control the quadcopter
system. In this trajectory, abrupt changes in the roads lead
to discontinuities in the trajectory.

The deviation of the quadcopter’s position was calculated
based on the distance between the reference point and the
actual point and displayed in a diagram “Fig. 11”. The total
deviation of error was then calculated according to IAE and
found to be 19.14 m for the cascade controller and 3.201
m for the GWO-cascade controller. These results show that
the performance of the controller could be improved by
approximately 83.3%.

Orientation errors occur while the quadcopter is following
the flight path. The difference between the reference orien-
tation and the actual orientation results in the orientation
error. To determine this difference, the reference Euler angles
and the actual Euler angles were converted into axis angle
representation. The amount of deviation in orientation was

Fig. 10. Discontinuous trajectories followed by the quadcopter payload system
with different controllers applied.

Fig. 11. Comparison of controller performances with respect to position error
in discontinuous trajectory.

Fig. 12. Comparison of controller performances with respect to orientation
error in discontinuous trajectory.
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calculated by performing dot product between the reference
and actual vectors obtained from the axis angle in “Fig. 12”.
While the total error in the orientation according to IAE
was 0.1257 rad when using the cascade controller, this result
changed to 0.2966 rad with the GWO cascade controller.
These orientation results show that the performance of the
cascade controller is better than that of the GWO-cascade
in the second trajectory. However, while the GWO-cascade
controller is better at resetting the error amount, as can be
seen in “Fig. 12”, the cascade controller made an oscillatory
motion. The orientation error of the GWO-cascade controller
is caused by peaks at the points where the PID parameters
change.

VI. CONCLUSION

In this study, the transportation of a time-varying payload,
which is rigidly connected to the quadcopter along the ref-
erence trajectory is discussed. The kinematic and dynamic
analysis of the system was carried out and then the non-linear
mathematical model was linearized using Taylor’s series ex-
pansion. A linear time-varying state space model was created
with the help of a linearized mathematical model. Since it is
difficult to control a system with different response rates in
its dynamic structure with a single control loop, a cascade
controller was designed. The gain parameters were optimized
with the GWO to increase the performance of the corre-
sponding controller and maintain its stability against time-
varying payloads. The optimization process was applied for 4
different payload values and the optimal gain parameters were
determined within a certain search space for each different
payload value. Subsequently, the obtained gain parameters
were simulated on continuous and discontinuous trajectories
to test the performance of the controller. The controller
maintained its stability against changing load values and the
performance of the classic cascade controller increased.

Further research is required to develop the mathematical
model can be created by taking into account the disturbance
inputs and uncertainties that affect the dynamics of the system
for outdoor flights. Optimum gain parameters can be obtained
and applied to the controller on-fly. The PID gain parameters
obtained as a result of the GWO for different payload values
did not exhibit uniform behavior. More research is required
to develop a deeper understanding of the relationship between
payload variation and behavior of the PID gain parameters.
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