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1. INTRODUCTION

There are several widely used conventions for representing rota-
tions in 3D space. These include rotation matrices, Euler angles,
unit quaternions, the exponential map, and the axis-angle repre-
sentation (Diebel et al., 2006). Each of these representations of-
fers distinct advantages depending on the application context.

Among these alternatives, Euler angles are commonly used
in the estimation (Marins, Yun, Bachmann, McGhee, & Zyda,
2001), control (Mokhtari & Benallegue, 2004), and navigation
of aerial systems such as quadcopters (Ozaslan et al., 2017) and
fixed-wing platforms, owing to their intuitive construction and
ease of interpretation .

Euler angles represent a rotation in 3D as a sequence of ele-
mentary rotations about non-parallel axes. These axes correspond
to the basis vectors of either the current or fixed frame depending
on the chosen convention. For example, roll-pitch-yaw angles,
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widely used in the avionics literature, parameterize the orienta-
tion of an aerial platform through its relative angle about X —y —z
basis vectors of a fixed frame (Fig. 1) (Mellinger & Kumar, 2011).

Although Euler angles representation is easy to interpret, it
is deficient in several important respects. Euler angles suffer from
gimbal lock a phenomenon that occurs when two of the rotation
axes align (Hemingway & O’Reilly, 2018). In such a configura-
tion, one degree-of-freedom (DoF) is lost, making the platform in-
stantaneously uncontrollable along the lost dimension. Secondly,
composing multiple rotations using Euler angles is not possible
except for a few corner cases. In general configurations, Euler an-
gles must be converted into rotation matrices or quaternions for
composition, and then converted back to Euler angles. Also there
are twelve distinct conventions for composing elementary rota-
tions which might be a source of confusion if adopted conventions
are not defined clearly.

This work focuses on the use of Euler and Tait-Bryan an-
gles for representing 3D rotations, with particular emphasis on
clearly stating the conventions used in the literature and enabling
the reader to competently interpret technical documentation and
software implementations involving rotational formulations.

% (roll, ¢)

¥ (pitch, 6)
2 (yaw, )

Figure 1: Roll-pitch-yaw (RPY) angles are widely used in avionics lit-
erature. This convention parametrizes the platform orientation as a se-
quence of elementary rotations applied in the xyz order with respect to
a fixed (inertial) frame.



2. ELEMENTARY ROTATIONS

A reference frame is define through its origin and basis vectors. In
Fig. 1 a reference frame, B, is attached to an airplane body, with
the basis vector X —y — z. In kinematic and dynamic formulations,
the three basis vectors are chosen to be mutually orthogonal, i.e. Xx-
y=0,y-z=0and x-z = 0, and have unit norms, i.e. X - X =
y -y = z -z = 1. Lastly, the basis vectors form a right-handed
triad, i.e. XXy = 7,y xZ = Xand Z x X = y. Elementary rotations
occur about one of the basis vectors of a given reference frame.

The axis about which the rotation occurs is unaffected,
while the other two basis vectors rotate as shown in Fig. 2. We
can obtain the respective rotation matrices through observing the
coordinates of these basis vectors after rotation. For example, the
vectors y and z after rotating about X by  radians can be written,
in terms of their initial values, as

X = [1, 0, O]T Y = [0, c(7), 8(7)]T 7= [0, —8(7)70(7)]T-

(D
This relation can easily be confirmed by observing Fig. 2a. Stack-

ing these vectors side-by-side one can obtain the elementary rota-
tion matrix about the respective axis as given below

1 0 0 c(B) 0 s(B)
Ri(7) =10 c(v) —s(v)| - Ry(@B)=] 0 1 0
0 s(v) c(v) —=s(B) 0 c(B)

)

where the subscripts denote the axis of rotation.
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(a) x-axis (b) y-axis (c) z-axis

Figure 2: The effect of elementary rotations on the other two basis vec-
tors: from left to right, rotations about the X, y, and Z axes.

3. COMPOSING ROTATIONS

Rotations can be combined through matrix multiplication. It should
be noted that the order in which the rotation matrices are multi-
plied is important since matrix multiplication is non-commutative
except for special cases, i.e. A - B # B - A for most A and B.
As an example, consider the two elementary rotations Ry (g) and
R; (%) applied at different orders on an a reference frame initially
at identity orientation as shown in Fig. 3. The elementary rotation
matrices are

0 01 0 -1 0
m ™
Ry<§>: 0o 1 0| , Ri(§>= L 0o 0o 3
-1 0 0 0 0 1
which results in the following orientations
00 1 0 -1 0
Ry ("/2) Rz ("2) = |1 0 O, Ry ("2)Ry("2) =0 0 1
010 -1 0 0
4)

It is evident from both geometric and algebraic perspectives that
the order in which rotations are applied is critical and may lead to
different final orientations.
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(a) Rotations about y and then z.

¢ e 0\

(b) Rotations about Z and then ¥.

Figure 3: Consecutive elementary rotations applied on a rectangular
prism about y and z at different orders to demonstrate that rotations are
not commutative. It should be noted that the second rotation is applied
with respect to the current frame.

3.1. Intrinsic and Extrinsic Rotations

In the above discussion, although the resulting orientations dif-
fer, both compositions produce valid rotation matrices. This un-
derscores a concept of fundamental importance in rotational kine-
matics: the outcome of successive rotations depends critically on
their order. Equally important is the reference frame with respect
to which each rotation is applied. Specifically, a rotation can be
performed either relative to the fixed (inertial) frame, referred to
as an extrinsic rotation, or relative to the current (rotating) frame,
which is known as an intrinsic rotation. This distinction leads to
different interpretations and implementations, particularly in ap-
plications such as robotics, aerospace, and computer graphics.

In the case of intrinsic rotations, where each new rotation
is applied relative to the current (rotating) frame, composition is



performed by multiplying the existing rotation matrix from the
right by the new rotation. Conversely, for extrinsic rotations,
where rotations are applied relative to the fixed (inertial) frame,
composition is performed by multiplying the new rotation from
the left.

Proof: Consider a rotation R; applied to an initial identity orien-
tation, where ¢ denotes the axis of rotation aligned with a basis
vector of the fixed (initial) frame. To apply a new rotation, R;
where 7 is a basis vector, with respect to the fixed frame, we must
virtually align the current (rotated) frame with the fixed frame be-
fore applying the new rotation.

This alignment is achieved by undoing the current orien-
tation, which can be performed by right-multiplying the current
rotation matrix by its inverse, R;'. Although this may seem triv-
ial, it allows us to apply the new elementary rotation matrix, R;,
with respect to the fixed frame (which, at that moment, is effec-
tively the current frame).

After applying the new rotation, R;, we reapply the origi-
nal orientation, R;, by right-multiplying the result with the origi-
nal rotation matrix. In total, this composition corresponds to /eft-
multiplication of the new rotation matrix onto the current orien-
tation, thereby validating the composition rule for extrinsic rota-
tions. These steps are summarized in Table 1

In order to compare the effect of order of rotations, we will
again consider the two elementary rotations Ry (g) and R; (g)
applied at different orders, but applied with respect to the fixed

frame. The resultant rotation matrices write

0 0 1 0O -1 0

Ry ("/2)R; (72) = |1 0 0| R ("/2)Ry ()= | 0 0 1
010 -1 0 0

®)



Step Current Orientation Explanation

1 RO =R, Initial rotation about axis 3.

2 RO =R, R;l Undo the effect of the initial
rotation. This temporarily aligns
the current frame with the fixed

(initial) frame.

3 RO =R; R;' R Apply a new rotation about axis
7, one of the axes of the fixed
(initial) frame.

4 RW=(R;-R;')-R;-R; Reapply the undone rotation to
restore the frame to its original
orientation before the new

rotation.
5 RW = R;R; Since R; - R;l = I, we simplify
to obtain the standard extrinsic

rotation composition.

Table 1: Steps illustrating extrinsic rotation using the logic of undoing
and reapplying previously applied rotations. Orientation at each step is
denoted by R(™) where n is the proof step.
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(a) Rotations about fixed y and then fixed z.
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(b) Rotations about fixed z and then fixed y.

Figure 4. Consecutive elementary rotations applied about fixed y and
fixed Z axes demonstrating extrinsic rotation.

The first equations is obtained by first applying a rotation about
fixed-z and then about fixed-y; and the second one rotating about
the fixed-y and then fixed-z. As these examples illustrate, apply-
ing rotations in reverse order under the opposite convention yields
the same final orientation.

Remark 1. Applying a sequence of rotations all in the intrinsic
convention is equivalent to applying the same sequence in reverse
order using the extrinsic convention, and vice versa. This equiva-
lence yields the same final orientation despite the differing frame
of reference.

Example: Now let’s work out a more comprehensive example
involving five sequential elementary rotations, mixing intrinsic
(current frame) and extrinsic (fixed frame) conventions. The su-
perscript on each rotation axis indicates the index of the interme-
diate frame with respect to which the rotation is applied, and the
subscript indicates the rotation axis. The initial orientation is de-



noted as R(®) = T and omitted in the following calculations since
the identity rotation has no effect.

Step 1: Rotate by « about the current X-axis:

RM = RO . R;0 (@)
= Rio () (6)

It should be noted that x() = x() since the axis of rota-
tion is an eigenvector with identity eigenvalue of the respective
rotation matrix, thus is not affected. In the subsequent steps, we
retain the index from the previous step as a matter of notational
consistency, even though the axis itself does not change.

Step 2: Rotate by y about the current y-axis (intrinsic rotation):

R® = RW. Ry (7)
= Ry (@) - Ry (7) (7

which is equivalent to writing

R® = Ry () Ry (y) and
= Ry (@) - Ry (7) ®)

due to the discussion in the previous step.

Step 3: Rotate by 6 about the fixed z-axis (extrinsic rotation): We
first undo the effect of the previously applied rotations, through
right-multiplication by (R(Q)) _1, apply the new elementary rota-
tion about the fixed z-axis, and then reapply the undone transfor-
mations, R®). This process is formalized as follows:

RG®) — R® . [(R@))—l Ry (0) - (R@))}

= 2(0)(9).(1((2))
= R;0 (0) - Ry (@) - Ry (7) )



Observe that the first pair of matrices evaluated to iden-
tity and are excluded. Thus, we conclude that applying a rotation
about a fixed axis is equivalent to pre-multiplying the correspond-
ing elementary rotation matrix with the current orientation.

Step 4: Rotate by [ about the current y-axis (intrinsic rotation):

R® =R® . Ry ()
= R;0 (0) - Ryo (@) - Ry (7) - Ryes) (B) (10)

Step 5: Rotate by o about the fixed Xx-axis (intrinsic rotation):
R®) — R® . [(Rm)*l Ry (8) - (R(4>)}

= R0 (6) - Ry0) (0) - Ry () - Ry (7) - Ry (B)  (11)

The resultant rotation matrix in Eqn. 11 could have been
obtained through other rotation sequences. One possible such se-
quence is composition of intrinsic elementary rotations about the
axes and angles as they appear in Eqn. 11. That is, rotation about
X by 9, then z by 6, then X by «, then y by ~ and finally about y by
S radians, all with respect to the current (rotating) frame gives the
same orientation. These observations will be useful when we dis-
cuss different Euler angle conventions in the subsequent sections.

4. EULER AND TAIT-BRYAN ANGLES

Leonhard Euler, in his seminal work in 1776, states that orienta-
tions of rigid bodies in three dimensional space can be represented
using successively applied three elementary rotations about coor-
dinate axes (basis vectors) (Pio, 1966). Euler primarily studied
the zxz sequence where the angles about each axes are called yaw
(¢), nutation (¢) and precession (v). Structures with the first and
the last axes being equal are commonly referred to as a proper Eu-
ler angle sequence, and the elementary rotations are applied with
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respect to the current frame unless otherwise is explicitly stated.
Proper Euler angle are widely used in application areas such as
classical and celestial mechanics, and analytical dynamics.

Later in the late 19*" and early 20" centuries, researchers
Peter Guthrie Tait and George Hartley Bryan proposed variations
with distinct axes of rotations. Tait and Bryan extensively stud-
ied the xyz sequence which is now referred to as roll-pitch-yaw
angles. Angles are usually represented with symbols ¢ — 6 — ).
Sequences with distinct axes of rotations became particularly use-
ful in the emerging fields of aviation and navigation (Fig. 1).

4.1. Possible Sequences and Conventions

There are a total of 3% = 27 possible axis sequences of three rota-
tions, such as xyx, xyz, xzx, and xzy. However, only twelve of
these constitute valid Euler or Tait-Bryan angle sequences. The
remaining fifteen sequences involve repeated adjacent axes, such
as XXX, XXy, or xyy, and are not used in practice due to lack of
independent rotational degrees of freedom hence such sequences
have either 1 or 2 DoF. Among the twelve valid configurations, six
are classified as proper Euler angle sequences , and the other six
as Tait-Bryan angle sequences. The former class has the first and
third rotation axes the same and the latter have all three rotation
axes distinct (Table 2).

Each class of sequences, Euler and Tait-Bryan, can be for-
mulated using either intrinsic or extrinsic composition conven-
tions. However due to various reasons such as terminological con-
sistency, conventions used in the literature and software packages
and interpretability, intrinsic composition convention is preferred
unless otherwise is clearly stated. As explained in the previous
sections, it is always possible to express any given sequence in
the reverse order thereby switching from intrinsic to extrinsic con-
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vention, and vice versa, when required. In summary, while an
extrinsic interpretation of Euler and Tait-Bryan angles can be de-
fined consistently from a mathematical standpoint, its use should
be stated clearly avoid misinterpretation.

Irrespective of the conventions used, only three angles along
with the axes of rotations, suffice to represent any rotation in SO(3)
making Euler/Tait-Bryan angles minimal in terms of representa-

tion.
Category Axis Sequences
Improper Sequences XXX, XXy, XXZ, yyX, Yy, YYZ, ZZX,

22y, ZZZ, XYY, YXX, YZZ, ZYY, XXZ
Proper Euler Sequences zxz, xyx, yzy, 2yz, XZX, yXy

Tait—Bryan Sequences Xyz, X2y, YXZ, YZX, ZXy, ZyX

Table 2: Categorization of 3-element axis sequences into improper,
proper Euler, and Tait-Bryan categories.

4.2. zyz Euler Angle Sequence:

In this section we will derive the rotation matrix for the zyz Euler
angle sequence. Embracing the general convention we apply the
elementary rotations with respect to the current frame and the an-
gles represented as yaw (¢), nutation (#) and precession (). The
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o —

double phi = ..., theta = ..., psi = ...;

3|Eigen: :AngleAxisd Rz1(phi, Eigen::Vector3d::UnitZ());

Eigen::AngleAxisd Ry(theta, Eigen::Vector3d::UnitY());

s|Eigen: :AngleAxisd Rz2(psi, Eigen::Vector3d::UnitZ());

7|Eigen: :Matrix3d R = Rzl * Ry * Rz2;

Listing 1: c++ code snippet for ZYZ intrinsic rotation using Eigen li-
brary

elementary rotation matrices are written as

c(p) —s(@) 0 c(d) 0 s(0)
Ro(6) = [s(¢) c(@) 0| . Ruw@=| 0 1 0
0 1 —s(0) 0 ¢(0)
c(¥) —s(@) 0
Ry () = |s(¢)  c() 0O (12)
0 0 1
The resultant rotation matrix is obtained as
R.y2(9,0,¢) = R0 (¢) - Ry (0) - Ry (¥) (13)
c(@)c(0)c() — s(¢)s(v)  —c()e(0)s(v) — s(@)e(y)  c(¢)s(0)
= |s(¢)c(@)c(¥) +c(9)s(¥)  —s(d)c(0)s(¥) + c(d)c(v)  s(¢)s(0)
—s(0)c() s(0)s(v) c(0)

The same resultant matrix could have been obtain by using the
ZYZ sequence with extrinsic convention and angles ¢, 6, ¢ which
would write

RE (1, 6,0) = Ryo) (9) - Ryio (6) - Ryco (1) (14)

We provide a c++ code snippet in Eigen (Guennebaud, Jacob, et
al., n.d.) for this sequence with intrinsic convention in Listing 1.
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4.2.1. Solving for zyz Euler Angles:

We have shown how to obtain the rotation matrix given the Euler
angles for the zyz sequence in Equation 13. The inverse prob-
lem, however, requires extracting the angles from a given rotation
matrix. Upon inspecting the structure of Equation 13, it becomes
evident that the top-left 2 x 2 submatrix is heavily coupled, making
it unsuitable for direct analytical inversion. In contrast, other ele-
ments of the matrix exhibit clearer patterns that can be exploited
to solve for the individual Euler angles.

Before we proceed further, we enumerate the elements of
the matrix as

Ri1 Rip Ris
R= Ry Ry Ro|. (15)
R31 R3» Rs3

Next we observe the elements Ry, Ro; and R3;, R3s all of which
include s(6). Thus, for § = w for n € Z all of these terms
become 0 which is a special case. Depending on the sign of s(6),
we can determine the angles using different formula. If s(6) > 0,
or equivalently 6 € (0, ), the solution take the following form

¢ = atan2(R23, ng) , w = atan2(R32, —Rgl)

0 = atan2 <\ | R3, + R3,, R33) . (16)

On the other hand if s(f) < 0, or equivalently 0 € (m, 27), we get

¢ = atan2(—R23, —ng) 5 1/) = atan2(—R32, Rgl)

0 = atan2 (—\/RfS + RZ,, ng) (17)

In the special case that s(f) = 0, either § = 2nworf = (2n+1)x
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for n € Z. In the former case Eqn. 13 takes the following form

Rzyz(¢7 27’L7T, ¢)

c(p)e(y) — s(@)s(v) —c(@)s(¥) — s()e(y) 0
= |5(9)c(¥) +c(9)s(v) —s(d)s(¥) +c(P)e(y) 0
i 0 0 1
cos(¢p+ 1) —sin(¢p+v) 0
= [sin(¢+¢) cos(¢+v) 0O (18)
0 0 1

and the latter case gives

Royz (¢, (20 + 1), ¢)

[—c(d)c(v) — s(¢)s(¥) c()s(v) — s(d)e(¥)) 0
= | —s(¢)e(®) +c(@)s(¥) s(¢)s(¥) + c(d)c(¥) 0

L 0 0 _1
[—cos(¢p— ) —sin(¢—v) 0
= | —sin(¢ —v¢) cos(¢—v) 0. (19)
0 0 —1

It clearly observed in the special case s(f) = 0, one degree of
freedom is lost since for a given rotation matrix, one can only solve
for the two quantities, # and ¢ + . Individual values of ¢ and 1
cannot be determined and this is called a gimbal lock.

4.2.2. Gimbal Lock for zyz Euler Sequence

A gimbal lock occurs when two of the rotation axes align. In
the case of zyz Euler sequence, this happened when the first and
the last z axes align. We have shown in the previous section that
0 = 2nm and 0 = (2n + 1)7 result in two different gimbal locks.
In the former case the intermediate rotation never happens since
R§1)(2n7r) = I causing 2 to remain unrotated, i.e. z* = 2. In
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the latter case R§1)(2n7r) results in 2 = —2?) i.e. the first and
the last axes of rotations become anti-parallel. In both cases only
one rotation about the same (or anti-parallel) axis.

S. EULER ANGLE KINEMATICS

In a typical attitude estimation scenario which employs an Inertial
Measurement Unit (IMU), an onboard gyroscope provides instan-
taneous angular velocity measurements which can be integrated
over time to estimate the platform orientation. While there is huge
literature on attitude estimation using accelerometer, gyroscope
and magnetometer which are usually packed into a single IMU,
the theoretical fundamentals and vast technical nuances are be-
yond the scope of the this work. However, we present the relation
between angular rates measured in sensor/body frame (B) and the
Euler angles. We will consider the zyz sequence to study this.

In order to obtain such a relation we need to write each
of the intermediate rotation axes with respect to the sensor/body
frame, B. We will use the notation introduced in the rest of the
work and enumerate axes with the index of the intermediate ref-
erence frames. For example, the first, second and last rotations
occur about 2?0, yM) and 2(?). Since these are the axes of rotation
of the respective step, they, respectively, are equal to z(), ¥? and
23, Let’s express each of these with respect to the body frame
basis vectors which are X®), 3 and z(®) as the final frame is by
definition the body frame, 3. The basis vectors at the intermediate
steps 1, 2 and 3 are related as

®3)

x® c() —s(¥) 0 X
YO = [s(¥) ) 0 y® (20)
yAS) 0 0 1 yAS
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x) c(@) 0 s(0) 2
yOl =1 0 1 0 y@ (21)
A —s(0) 0 ¢(0) AL

where the rotation matrices, respectively, are R;@ and R;l). The
body angular velocity in terms of the Euler angular rates is

w = ¢z + 0y + ¢z, (22)

At this point we need to express all vectors in the above expression
in terms of basis vectors of the final, 37¢, frame as

M = 5(0)x? + ¢(9)z? (23)
¥ = —s(¥)x® + c(v)y®. (24)

But this requires us to write the following relations as well

x® = ()X + s()§" (25)
72 =20 (26)

which gives
2 = s(0) (W)X + s()§?) + ()"
= s(B)c(V)x”) + s(0)s(V)y® + (). (@7
Thus the angular velocity in Euler angle rates can be written as
w = d(s(O)()XD + 5(0)s()y + c(0)2)
+0( = s + ()3 ) + 2 (28)
= X0 (ds(0)c(v) — fs(w) ) +
¥ (ds(0)s(0) + 0c()) + 29 (e(0) + 1) (29)

In the robotics literature the angular rates as measured by a gyro-
scope are usually denoted [p, ¢,7]" and defined in the 37¢ frame

17



(also B). Hence these and the Euler angular rates are now defined
in the same frame and can be related as

b [sOew) —stw) 0] [4
q| = |s(0)s(¢) c(y) O |0]. (30)
r c(0) 0 1| ¢

Having this relation established, gyroscope measurements can be
transformed into Euler angular rates which then can be numeri-
cally integrated to directly update the orientation estimate in Euler
domain.

6. CONCLUSION

Euler angles are widely used in the robotics and computer vi-
sion communities as a means of representing orientation in three-
dimensional space. Their appeal lies in their intuitive geometric
interpretation and ease of visualization. However, for algorith-
mic and computational purposes, Euler angles are often converted
into more tractable representations such as rotation matrices or
unit quaternions.

In this work, we focused on the zyz Euler angle conven-
tion. We derived the associated rotation matrix, examined the in-
verse problem of recovering Euler angles from a given rotation
matrix, and analyzed singular configurations and corner cases that
arise in practical applications. Furthermore, we established a re-
lationship between angular velocity, typically measured by a gy-
roscope, and the time derivatives of the zyz Euler angles. This
derivation provides a useful bridge between sensor measurements
and orientation parameters.

The methodology and illustrative examples presented in
this work can be extended to other Euler sequences. We hope this
work serves as a foundational reference for researchers and practi-
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tioners seeking to understand and employ Euler angle conventions
in 3D orientation estimation tasks.
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