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Abstract

Inertial Measurement Units (IMUs) consist of various sensors, in-
cluding accelerometers, gyroscopes, and magnetometers. Depending on
the design choices of the manufacturer, an IMU may integrate one or
more of these sensors, often incorporating multiple units to provide re-
dundancy and enhance reliability. These sensors generate high-frequency
data, typically ranging from 100 Hz to 1000 Hz, making them signifi-
cantly faster than alternative perception sensors such as cameras, Li-
DARs, and depth sensors commonly employed in mobile robotics. Due
to their high update rates and acceptable error bounds, IMUs are the
primary choice for short-term state estimation. In particular, within the
Kalman filter framework—widely implemented across mobile robotic
systems—the process update step is driven by measurements obtained
from accelerometers and gyroscopes. Consequently, IMUs are indis-
pensable in mobile robotics applications. However, these sensors in-
herently exhibit noise and biases, which can lead to unreliable outputs
if not properly calibrated or employed alongside appropriate mathemat-
ical filtering techniques, such as the Kalman filter family. This work
provides a comprehensive analysis of IMUs and their constituent sen-
sors, examining their working principles, sources of noise, calibration
models, limitations, and strengths.

1 INTRODUCTION

Mobile robotics applications, including autonomous aerial drones (Özaslan et
al., 2017), self-navigating ground vehicles , underwater platforms (Ioannou et
al., 2024), and even rockets, extensively rely on accelerometers, gyroscopes,
and magnetometers for state estimation and motion tracking. Depending on
the specific application requirements, these platforms may integrate redundant
sensor configurations, incorporating multiple instances of one or more of these
sensors to enhance reliability and accuracy (Meier, Tanskanen, Fraundorfer, &
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Pollefeys, 2011). Such sensor assemblies are typically encapsulated within a
single unit known as an Inertial Measurement Unit (IMU).

An IMU integrates multiple sensors to provide precise motion and orienta-
tion data. The accelerometer measures linear acceleration, enabling the esti-
mation of external forces—such as aerodynamic drag and external perturba-
tions—when the mass of the system is known. Additionally, the accelerometer
facilitates tilt estimation by detecting the direction of the gravitational field,
thereby enabling movement detection and orientation changes relative to the
inertial frame (Freescale, 2013). The gyroscope measures angular velocity and
orientation within the IMU’s frame, allowing for accurate tracking of rotational
motion (Kraft, 2003). Unlike accelerometers, gyroscopes do not measure a
reference vector, such as gravity. However, by integrating gyroscope mea-
surements over time, orientation can be estimated with high precision. The
magnetometer, often referred to as a digital compass, detects Earth’s magnetic
field as well as other magnetic sources in the environment, assisting in absolute
heading estimation, provided that magnetic disturbances are minimal.

Each of these sensors exhibits inherent strengths and limitations. However,
when properly calibrated and fused within an appropriate estimation frame-
work, their complementary characteristics compensate for individual weak-
nesses (Fong, Ong, & Nee, 2008; Rehder, Nikolic, Schneider, Hinzmann, &
Siegwart, 2016; Tedaldi, Pretto, & Menegatti, 2014). By leveraging sensor fu-
sion techniques, an IMU enables accurate estimation of position, velocity, and
attitude, making it an indispensable component in robotics, drone navigation,
aerospace systems, and mobile devices.

1.1 Misconceptions about IMUs

When examining manufacturer catalogs or technical documentation, various
naming conventions and descriptions regarding the capabilities of IMUs can
lead to misconceptions. One common misunderstanding pertains to the spe-
cific functionalities of different sensors within an IMU. Many users are uncer-
tain about the role of accelerometers, gyroscopes, and magnetometers, their
respective strengths and limitations, and the types of devices that incorporate
IMUs, such as smartphones (Michel, Geneves, Fourati, & Layaida, 2017), au-
tomobiles, drones, and aircraft.
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IMUs may contain 1-axis, 2-axis, or 3-axis configurations of accelerometers,
gyroscopes, and magnetometers (each), typically arranged perpendicularly to
one another. This configuration has led to confusion in terminology, partic-
ularly regarding sensor nomenclature. For instance, terms such as 6-axis ac-
celerometer or 6-axis gyroscope are technically inaccurate and misleading. In
contrast, the designation 9-axis IMU correctly refers to an IMU that integrates
a 3-axis accelerometer, a 3-axis gyroscope, and a 3-axis magnetometer.

Another prevalent misconception involves the concept of degrees of freedom
(DoF) in relation to IMUs. IMUs themselves do not possess intrinsic degrees
of freedom; rather, they provide sensor data that facilitates the estimation of a
platform’s state within its degrees of freedom. A rigid body operating in three-
dimensional space inherently exhibits six degrees of freedom—three transla-
tional and three rotational. Therefore, marketing claims suggesting that an
IMU can estimate 9 DoF are misleading. A more precise statement would
be that the IMU enables the estimation of the full six degrees of freedom of
a platform, potentially incorporating additional sensor fusion techniques for
improved state estimation. Knowledgeable vendors and manufacturers should
adhere to accurate terminology to avoid propagating misconceptions regarding
IMU capabilities.

1.2 The Sudden Rise of IMUs in the Market

The accessibility of IMUs significantly improved after the U.S. Department of
Motor Vehicles (DMV) mandated the installation of airbags in all new cars.
Airbags rely on accelerometers to detect sudden deceleration and trigger de-
ployment, leading major manufacturers such as Bosch, STMicroelectronics,
and Analog Devices to invest heavily in MEMS (Micro-Electro-Mechanical
Systems) technology. This investment drove mass production, reducing costs
and making IMUs more accessible to researchers and consumer electronics
manufacturers. As a result, IMUs became widely adopted in robotics, naviga-
tion, and entertainment applications (Figure 1).

With increased accessibility, IMUs quickly became essential in various fields
due to their ability to provide real-time motion and orientation data. In in-
ertial navigation, IMUs are crucial for aircraft and missiles, enabling precise
positioning without relying on external references. For state estimation, IMUs
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Figure 1: Application areas of IMUs include game consoles, virtual and aug-
mented reality, inertial navigation and missile guidance systems.

help drones and autonomous ground vehicles maintain stability and accurately
track motion. In attitude control applications, IMUs support VTOL drones
by facilitating self-balancing, flipping maneuvers, and enhancing the agility
of racing drones. In virtual and augmented reality, devices like the Oculus
(LaValle, Yershova, Katsev, & Antonov, 2014) headset utilize IMUs to track
head movements, improving immersion and user experience. Similarly, gam-
ing consoles such as the Nintendo Wii integrate IMUs to detect user motion,
enabling interactive gameplay. The widespread adoption of IMUs in these do-
mains underscores their versatility and importance in modern technology.

1.3 Review on Orientation Estimation

Orientation estimation using IMUs has been a significant focus in academic
research, initially driven by satellite control applications (Black, 1964). Early
methods relied on magnetometers to determine orientation relative to Earth’s
magnetic field. NASA played a key role in advancing orientation representa-
tion over the years (Bar-Itzhack, 2000). In particular the Eulerian approach,
requiring extensive trigonometric computations, was deemed impractical due
to the computational limitations of early processors.

As the demand for efficient attitude estimation grew, quaternion algebra gained
prominence for its compact, singularity-free representation of rotations, mak-
ing it ideal for spacecraft and robotics (Dantam, 2002; Eberly, 2002; Katthöfer
& Yoon, 2012). Researchers like (Hartley, Trumpf, Dai, & Li, 2013; Markley,
Cheng, Crassidis, & Oshman, 2007; Valenti, Dryanovski, & Xiao, 2015) con-
tributed to quaternion averaging, crucial for spacecraft attitude estimation and
multi-sensor fusion.
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Gyroscopes and their companion sensors are essential for attitude estimation
in IMUs, but they are inherently noisy. Proper noise modeling such as the work
(Lam, Stamatakos, Woodruff, & Ashton, 2003) is crucial for integration into
estimators like the Extended or Unscented Kalman Filter to achieve accurate
results (Guo, Wu, Wang, & Qian, 2017).

Early orientation estimation methods relied on complementary filters to fuse
accelerometer and gyroscope data. A major improvement came with nonlin-
ear complementary filters, introduced in (Mahony, Hamel, & Pflimlin, 2005),
offering a robust attitude estimation framework. This approach was further re-
fined by (Mahony, Hamel, & Pflimlin, 2008) and (Hamel & Mahony, 2006),
who formulated it on the special orthogonal group SO(3), improving stability
and computational efficiency. (Huynh, 2009) proposed a method for defining
distances between orientations which also helped in defining filtering tech-
niques.

To address gyro bias drift, (Euston, Coote, Mahony, Kim, & Hamel, 2008) ex-
tended the passive complementary filter with an adaptive mechanism, enhanc-
ing long-term accuracy—especially for UAV applications. Also Kalman filters
add the bias terms to their state vectors to update the noise model parameters
on-the-file (Sun et al., 2018)

One of the more recent filters for orientation estimation is the Madgwick fil-
ter (Madgwick, 2010), which offers several advantages over the Kalman fam-
ily of filters (Hartikainen, Solin, & Särkkä, 2011), including lower computa-
tional complexity, no need for matrix inversion, and reduced latency, making
it well-suited for real-time applications. Similarly, (Fourati, Manamanni, Afi-
lal, & Handrich, 2011) proposed a nonlinear filtering approach based on the
Levenberg-Marquardt algorithm to enhance orientation estimation using low-
cost IMUs. Similar to Madgwick’s work (Liu, Liu, Gong, & Wu, 2018) pro-
posed a fast estimator based on a Kalman filter.

The range of orientation estimation, IMU calibration, and filtering approaches
is extensive. The references provided serve as a starting point for a more in-
depth exploration of the topic. Given the vast number of available methods, a
comprehensive listing is beyond the scope of this work.
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2 WORKING PRINCIPLE OF MEMS SENSORS

In this section, we examine the fundamental components of a typical IMU,
namely the MEMS accelerometer, gyroscope, and magnetometer. These sen-
sors are fabricated using micro-electromechanical systems (MEMS) technol-
ogy and are often smaller than a fraction of a millimeter.

To provide a sense of scale, one can refer to the technical specifications of
widely used models such as ADXL345 by Analog Devices, MPU6050 by In-
venSense/TDK or L3GD20H by STM. Due to mass production, these sensors
are relatively inexpensive, typically costing around $2-5. However, when inte-
grated into high-end IMUs that incorporate real-time thermal calibration, sig-
nal filtering, and state estimation, their cost can increase significantly, reaching
hundreds of USD, as seen in models of manufacturers such as VectorNav, Mi-
croStrain.

2.1 MEMS Accelerometers

2.1.1 Working Principle

MEMS accelerometers function based on a mass-spring system within a mi-
crofabricated structure. A simplified schematic of a typical MEMS accelerom-
eter is shown in Figure 2. The sensor consists of a proof mass (the ball at
the center) suspended by springs within the device envelope. External forces,
whether from the gravitational field or the motion of the sensor, cause the mass
to displace, leading to deformation of the springs.

If the displacement is due to gravity, the proof mass moves in the same direc-
tion as the gravitational acceleration vector. Conversely, if the force is induced
by motion, the mass deflects opposite to the acceleration vector relative to the
sensor envelope. By measuring the deformation of the springs, the force act-
ing on the mass can be determined, allowing for the estimation of acceleration.
This principle forms the basis of MEMS accelerometers used in modern de-
vices.

Figure 2 illustrates different cases of accelerometer behavior. In Figure 2-a, the
sensor is neither accelerating nor subjected to a gravitational field, which may
occur if the gravity vector is perpendicular to the sensor’s sensing plane. In
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Figure 2: A model for a MEMS accelerometer. A mass is connected to the
sensor body through springs. Changes in spring length are converted into ac-
celeration.

Figure 2-b, the sensor is in a gravitational field, causing the proof mass to de-
flect in the same direction as the gravitational acceleration. Figure 2-c depicts
a scenario where the sensor is accelerating to the right without gravitational in-
fluence, or where the gravitational field is perpendicular to the motion plane of
the mass. The rightmost figure represents a case where the sensor experiences
both acceleration and gravity simultaneously.

As can be observed, the sensor cannot inherently distinguish between proof
mass deflection caused by gravity or motion. Both effects result in identical
measurements. For instance, in Figure 2-b, the sensor may falsely interpret its
stationary state under gravity as an upward acceleration.

This static deflection due to gravity can either be a challenge or a useful ref-
erence for orientation estimation, depending on the application. For example,
when a drone flies against a drag force, the accelerometer captures both the
external force and gravitational influence. Extracting motion-induced com-
ponents from raw sensor data requires advanced filtering techniques. How-
ever, when the sensor is at rest or moving at constant velocity with no external
forces, its raw accelerometer readings (excluding sensor noise) directly cor-
respond to the gravitational vector. As discussed in the following sections,
this property enables reliable estimation of roll and pitch angles—collectively
known as tilt angles.
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Figure 3: (a) Schematic illustration of a single-axis MEMS accelerometer. (b-
c) Electron microscope images of a MEMS accelerometer, showing the proof
mass and comb-like electrode structures.

2.1.2 Electro-Mechanical Structure

MEMS accelerometers are a type of micro-electromechanical system (MEMS)
fabricated using microelectronic manufacturing techniques. They primarily
operate based on capacitive sensing, which is the most common method, or
piezoresistive sensing. A schematic representation of a MEMS accelerome-
ter, along with an electron microscope image of an actual device, is shown in
Figure 3.

The figure illustrates the internal structure of a MEMS accelerometer, high-
lighting the proof mass, suspension springs, and capacitor plates that enable
sensing. These components function together to detect acceleration changes
and provide precise motion measurements for various applications.

At the core of a MEMS accelerometer is a proof mass suspended within the
structure by flexible springs (Figure 3-b). When an external force is applied,
the proof mass resists motion due to inertia, causing a relative displacement
within its enclosure. This displacement alters the capacitance between adjacent
comb-like electrode structures, which is then measured and converted into an
acceleration value.

Comb-like structured MEMS accelerometers operate based on the relative mo-
tion of interdigitated capacitor plates. Since these plates are extremely thin,
they effectively behave as capacitors. As the moving comb structure shifts due
to acceleration, the capacitance between adjacent plates changes. This varia-
tion in capacitance induces a voltage difference across the plates, which is then
used to infer the displacement of the proof mass relative to the sensor envelope
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Figure 4: (a) Fixed and moving capacitor plates. (b) Gap between capaci-
tor plates change as the sensor accelerates. (c) Voltage difference accross the
plates is measured to infer proff-mass displacement (Bolton, 2003).

(Figure 4). The relationship between capacitance and displacement is given
by:

C−∆C = εrε0
A

d + z
→ ∆C

C
=− x/d

1+(z/d)
(1)

where C is the initial capacitance between the plates, ∆C is the change in ca-
pacitance due to displacement, d is the initial separation between the capacitor
plates, z is the displacement of the proof mass, x is the total displacement of
the sensing element relative to the sensor frame, and εr,ε0 are constants.

As evident from these equations, the relationship between displacement (z)
and capacitance (∆C) is nonlinear, which can introduce complexity in signal
processing. A more effective approach is to use a differential capacitance con-
figuration, which establishes a linear relationship between displacement and
voltage difference (Figure 4-c). The differential capacitance equations are de-
rived as:

V1 =Vr
C2

C1 +C2
, V2 =Vr

C1

C1 +C2
→ V1 −V2 =

C2 −C1

C1 +C2
(2)

Plugging in capacitance expressions

C1 = ε0εr
A

d − z
, C2 = ε0εr

A
d + z

(3)
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Figure 5: Examples of mechanical gyroscopes that were engineering marvels
of their time.

we get

V1 −V2 =Vr

(
1/(d − z)−1/(d + z)
1/(d − z)+1/(d + z)

)
= Vr

z
d

(4)

Using the configuration in Figure 4-c, the voltage difference across the two
capacitors is directly proportional to the displacement of the proof mass as
shown above.

2.2 Gyroscope

2.2.1 Working Principle

A gyroscope is a device that exploits the gyroscopic effect, which is the resis-
tance of a rotating mass to changes in its axis of rotation. This effect arises
due to the conservation of angular momentum and is used to measure angular
momentum.

Gyroscopes play a critical role in navigation and orientation determination in
various applications. They are essential components in ships, aircraft, mis-
siles, drones, submarines, torpedoes, and even spacecraft. Historical examples
include the Japanese Type 93 ”Long Lance” torpedo gyroscope, which was
used in naval warfare. Modern implementations include the IMUs used in the
Apollo navigation system for space exploration (Figure 5).

Mechanical gyroscopes, while once engineering marvels, are bulky, heavy,
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Figure 6: (a) A radially oscillating mass is supported by springs on both sides.
(b) When the system undergoes rotation, Coriolis forces induce lateral dis-
placement of the mass. (Image source: Analog Devices)

and require significant energy to sustain their angular momentum. In contrast,
modern gyroscopes are designed and manufactured using MEMS technology,
making them compact, lightweight, and energy-efficient.

MEMS gyroscopes operate based on the Coriolis effect, which arises when a
vibrating structure experiences a change in its plane of motion. Instead of using
a traditional spinning mass like mechanical gyroscopes, MEMS gyroscopes
rely on vibrating elements that oscillate in a fixed plane. Figure 6 illustrate the
working principle of these devices.

In Figure 6-a, the resonating mass oscillates radially at a controlled frequency.
When the system rotates about an axis not parallel to the plane of oscillation,
Coriolis forces cause lateral displacement of the mass, as shown in Figure 6-b.
This displacement affects the lateral springs, leading to a measurable change
in capacitance, similar to the sensing mechanism in MEMS accelerometers.
Capacitive sense fingers detect these displacements by measuring differential
capacitance between the moving mass and fixed electrodes. The resulting dif-
ferential capacitance is converted into an electrical signal, which is propor-
tional to the Coriolis force. Since the resonance frequency is known and ac-
tively controlled, the system can accurately derive the angular velocity around
the axis perpendicular to the oscillation plane.

A similar principle is observed in nature, particularly in flying insects such
as flies as shown in Figure 7. Insects possess specialized organs called hal-
teres, which are small, club-shaped structures that oscillate in sync with wing-
beats. As the insect changes direction during flight, the Coriolis forces acting
on the halteres provide sensory feedback, enabling the insect to maintain sta-
bility and orientation. MEMS gyroscopes mimic this biological mechanism,
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Figure 7: Flying insects are equipped with special organs called halteres,
which help them control their orientation.

using vibrating structures to detect rotational movement and provide precise
inertial measurements. This approach allows for compact, low-power, and
cost-effective gyroscopes, making them ideal for modern applications in navi-
gation, robotics, and consumer electronics.

2.2.2 Electro-Mechanical Structure

At the heart of a MEMS gyroscope lies a proof mass that is driven into oscilla-
tory motion within a fixed plane (Figure 8). This motion is typically sustained
at a resonant frequency using electrostatic actuation, which minimizes power
consumption and enhances sensitivity.

Let’s assume that the mass resonating along X axis. When the sensor under-
goes rotation about the perpendicular axis (e.g. the Z-axis), the Coriolis force
acts on the vibrating mass, causing a displacement along the third axis (e.g.
the Y -axis). This force is given by:

Fc = 2mvΩz (5)

where Fc is the Coriolis force, m is the mass of the resonating element, v is the
radial velocity of the vibrating mass, Ωz is the angular velocity of the gyro-
scope.

The Coriolis force introduces a small displacement in the proof mass, which
is then detected using capacitive sensing (Figure 6). Since this displacement
is proportional to the angular velocity Ωz, the system can reliably estimate
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Figure 8: Close-up view of a MEMS gyroscope from an iPhone 4, highlighting
its resonating structure. The circular pattern of the structure is clearly visible.
(Image source: ChipWorks)

rotational motion. Solving for Ωz in the above equation, we obtain:

Ωz =
Fc

2mv
. (6)

Since the resonance frequency and proof mass are known system parameters,
the measured Coriolis force can be used to accurately determine the angular
velocity. The displacement caused by the Coriolis force is typically measured
using differential capacitive sensing, employing a structure similar to that of
accelerometers.

Finally, by arranging multiple gyroscopes along different axes, it is possible
to infer rotational speed in multiple directions. This enables precise orienta-
tion estimation regardless of the mounting orientation of the gyroscopes on a
mobile platform.

3 SENSOR MODEL

IMU calibration refers to the process of modeling the relationship between ac-
tual external excitations and the measurements provided by the IMU (Green-
heck, 2015). Specifically, we focus on calibrating the accelerometer and gyro-
scope, as both sensors are subject to similar sources of error and noise, albeit
with some differences due to their distinct operating principles.

As discussed in previous sections, both motion and gravity effect sensor out-
puts. Before acceleration or angular velocity measurements are obtained, the
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sensor signals undergo multiple transformations, introducing noise due to elec-
trical imperfections. Additionally, the mechanical structure of the sensors can
introduce errors, such as manufacturing inaccuracies, misalignment of sensor
axes, and structural inconsistencies. Proper calibration is essential to mitigate
these effects and improve measurement accuracy.

The sources of error in IMU measurements can generally be categorized into
two main groups: (1) Deterministic errors, (2) Stochastic errors. These er-
rors affect both accelerometers and gyroscopes, impacting the accuracy and
reliability of the measurements. In the following sections, we will examine
each type of error in detail, discussing their origins and potential mitigation
strategies.

3.1 Deterministic Errors

3.1.1 Static Bias

Static bias might be one of the most critical sources of error in IMUs, as it is
typically additive in nature. This bias can vary with temperature fluctuations
and power cycles, leading to drift in sensor readings over time. After each
power cycle, the bias may change, and depending on temperature and electrical
conditions, it can further drift, necessitating continuous recalibration.

In MAV applications, this error is often incorporated into the platform’s state
and updated dynamically within a Kalman filter framework (Özaslan et al.,
2017; Sun et al., 2018). The bias error vector is expressed as:

bbb⊤a =
[
ba,x ba,y ba,z

]
(7)

Bias errors introduce a constant offset in sensor measurements, affecting over-
all accuracy. To mitigate their impact, proper calibration and compensation
techniques must be employed, ensuring reliable state estimation and control.

3.1.2 Scaling Factors

The raw measurements can be scaled up or down, distorting the actual values
(Figure 9-a). When combined with additive bias errors, this scaling effect is
typically sufficient to compensate for single-axis errors. For 3-axis accelerom-
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Figure 9: (a) Distortion of the ground truth acceleration/angular rate due to
a non-unity scaling factor. (b) Multi-axis sensor with one of the single-axis
components mounted with a slight misalignment.

eters and gyroscopes, the scaling factor can be modeled as a diagonal matrix,
given by:

SSSa =

Sa,x 0 0
0 Sa,y 0
0 0 Sa,z

 (8)

Ideally, SSSa is the identity matrix.

3.1.3 Misalignment

Multiple single-axis sensors are integrated into a single package to form a 3-
axis sensor. During the manufacturing process, individual single-axis sensors
might be mounted onto the sensor base with slight misalignment. Although
each sensor may provide accurate measurements individually, collectively, the
sensor data can exhibit errors due to these misalignments (Figure 9-b). This
misalignment is modeled using a 3×3 skew-symmetric matrix MMMa, which can
be expressed as:

MMMa =

 0 Ma,xy Ma,xz

−Ma,xy 0 Ma,yz

−Ma,xz −Ma,yz 0

 (9)

Here, Ma,i j represents the acceleration along axis j, as measured by sensor i.
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3.1.4 g-Sensitivity (Gyroscope Only)

A gyroscope is ideally designed to measure angular rate. However, in practice,
linear acceleration can influence the angular rate measurements. This occurs
due to imperfections in the gyroscope’s mechanical structure, causing it to
exhibit unintended sensitivity to linear acceleration. As a result, the gyroscope
bias shifts when subjected to translational acceleration. This effect is modeled
by a full 3×3 matrix, denoted as the g-sensitivity matrix:

GGGg =

Gg,xx Gg,xy Gg,xz

Gg,yx Gg,yy Gg,yz

Gg,zx Gg,zy Gg,zz

 (10)

The resulting error is computed as eeeg = GGGgaaa where aaa represents the actual
translational acceleration of the sensor.

3.1.5 Temperature-Dependent Bias

The intricate structures inside a MEMS sensor are affected by temperature
variations. Changes in material properties due to temperature fluctuations alter
the mechanical response of spring structures, as explained in previous sections.
This, in turn, impacts the sensor’s measurement accuracy.

To mitigate this error, a lookup table (LUT) approach is commonly used. The
sensor undergoes calibration at various temperature levels, and the correspond-
ing correction parameters are stored. An internal temperature sensor contin-
uously monitors the temperature and retrieves the most suitable calibration
parameters from the LUT to compensate for temperature-induced biases.

3.2 Stochastic Errors

In the previous sections, we discussed various sources of deterministic errors
that can be modeled to some extent. For example, additive bias can be es-
timated and subtracted from raw measurements, improving measurement ac-
curacy. Since this bias persists over time with gradual fluctuations, it can be
tracked using estimation techniques such as Kalman filtering. Similar mod-
eling approaches apply to scaling errors, temperature-induced variations, and
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Figure 10: (a) Random noise superimposed on ground truth measurements. (b)
Integration of random noise over time causing random walk in speed estimates.

misalignment errors.

However, there exist other sources of error that cannot be precisely determined
and must instead be characterized using probability distributions. Unlike de-
terministic errors, these stochastic errors exhibit statistical properties, typically
following Gaussian or Gamma distributions, but their individual values cannot
be estimated with practically useful accuracy. These errors are categorized
under stochastic noise models.

3.2.1 Random Noise

Random noise arises from thermo-mechanical fluctuations within the sensor.
It is typically modeled as additive white Gaussian noise (AWGN) with the fol-
lowing zero-mean assumption. For gyroscopes, this type of noise is quantified
as Angle Random Walk (ARW), while for accelerometers, it is referred to as
Velocity Random Walk (VRW) (Figure 10-a).

3.2.2 Bias Random Walk

Bias random walk is caused by electronic flicker noise, leading to random
variations in the bias term even when external conditions, such as tempera-
ture, remain constant. Unlike deterministic bias errors, which can be corrected
through calibration, bias random walk introduces long-term drift that requires
continuous estimation (Figure 10-b).

To mitigate this effect, bias terms are typically included as part of an extended
Kalman filter (EKF) or unscented Kalman filter (UKF) framework, allowing
for dynamic compensation over time.
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3.3 Mathematical Representations

3.3.1 Accelerometer Sensor Model

The sources of error for accelerometers can be categorized into deterministic
and stochastic errors. Deterministic errors include static bias, scaling error,
misalignment error, and temperature effects. These errors can often be mod-
eled and compensated for through calibration. On the other hand, stochastic
errors, such as white noise and random walk, cannot be precisely determined
and are typically modeled using probabilistic methods.

The cumulative effect of these error sources can be expressed as:

Kaãaa = (I+SSSa +MMMa)aaa+bbba +TTT a∆T +ηa + εa (11)

where Ka represents the sensitivity scale factor in units of g, and ãaa is the dig-
ital output of the accelerometer. The term I is the identity matrix, while SSSa

represents the scale factor matrix and MMMa accounts for the skew-symmetric
cross-coupling effects. The bias error is denoted as bbba, and TTT a∆T models
the temperature-dependent variations in the measurements. The term ηa rep-
resents zero-mean white noise, while εa accounts for the random walk noise
affecting the sensor output.

3.3.2 Gyroscope Sensor Model

The sources of error for gyroscopes are the same as those for accelerometers,
with the addition of g-sensitivity, which accounts for the influence of linear
acceleration on angular rate measurements. The combined effect of these error
sources can be expressed as:

Kgω̃ωω = (I+SSSg +MMMg)ωωω +bbbg +GGGgaaa+TTT g∆T +ηg + εg (12)

where Kg represents the sensitivity scale factor in units of rad/sec, and ω̃ωω is
the digital output of the gyroscope. The g-sensitivity matrix GGGg introduces an
error dependent on the acceleration input aaa. All other terms are similar to their
counterparts in the accelerometer model.
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3.4 Simplified Sensor Models

In certain scenarios, many of the terms included in the comprehensive sensor
models (Equation 11-12) have either an insignificant effect on the measure-
ments or are irrelevant due to the absence of specific factors in the applica-
tion. For instance, if an IMU operates in a stable thermal environment with
minimal temperature fluctuations, temperature-dependent error terms can be
disregarded. Similarly, if the manufacturer employs high-precision assembly
techniques, misalignment errors may be negligible. Additionally, if the IMU
is not subjected to extreme accelerations, such as in missile guidance systems,
the g-sensitivity term may have little impact. In such cases, the sensor models
can be simplified by removing unnecessary terms while preserving essential
measurement characteristics.

A simplified accelerometer model assumes that the measured acceleration is
affected primarily by bias and Gaussian noise. This can be expressed as:

ãaa = aaa+bbba +ηa (13)

where ãaa represents the measured acceleration, aaa is the true acceleration, bbba

accounts for the accelerometer bias, and ηa is zero-mean Gaussian noise with
covariance Σ2

a.

Similarly, the gyroscope model can be simplified using the same approach:

ω̃ωω = ωωω +bbbg +ηg (14)

where ω̃ωω is the measured angular velocity, ωωω represents the true angular veloc-
ity, bbbg accounts for gyroscope bias, and ηg is zero-mean Gaussian noise with
covariance Σ2

g.

These simplified models offer an effective means of interpreting IMU mea-
surements, especially in applications where precise calibration is not feasible
or necessary. By focusing on the dominant error sources while ignoring negli-
gible effects, these models provide a balance between accuracy and computa-
tional efficiency.
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4 SENSOR CALIBRATION

Calibration of an IMU can be performed using either professional calibration
setups or simplified procedures based on well-defined conditions. A basic ap-
proach involves placing the sensor in known static orientations, such as resting
on a table, and maintaining it stationary for a certain duration to collect refer-
ence measurements.

For high-end commercial products or military-grade devices, professional cal-
ibration setups are required to achieve precise and repeatable results. In such
cases, a tumble test must be conducted (Figure 11). This test is specifically
used to collect accelerometer data by placing the IMU on each of its faces or
using a turntable. The objective is to ensure that the recorded measurements
correspond to expected values, typically ±1g, in response to the gravitational
field.

Gyroscope calibration, on the other hand, is typically performed using a turntable,
where a constant angular velocity is applied about each axis to determine the
sensor’s scale factor and bias. The equipment commonly used for IMU cali-
bration is illustrated in Figure 11.

The calibration procedures for accelerometers and gyroscopes are standardized
by the IEEE, as outlined in (IEEE Standards Association, 2019) and (IEEE
Standards Association, 2004), respectively.

4.1 Practical Considerations for Simplified Calibration

In cases where high-precision calibration is not required, such as in applica-
tions where IMU measurements are not the primary source of navigation data,
simplified calibration procedures may be sufficient.

It is generally reasonable to assume that manufacturers ensure proper sensor
alignment, meaning that individual sensing axes are mounted orthogonally to
the sensor base. This assumption eliminates the need to explicitly model mis-
alignment errors.

Similarly, in many applications, such as typical MAV flights, temperature vari-
ations during operation are minimal. This reduces the necessity of performing
extensive temperature calibration. Furthermore, g-sensitivity, which refers to
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Figure 11: (a) Two-axis turntable and (b) Two-axis thermal chamber. (Image
source: vectornav.com)

the effect of linear acceleration on gyroscope measurements, may be present
but is often negligible in applications that do not involve extreme accelerations,
such as missile guidance or high-dynamic maneuvers.

Under these assumptions, the primary calibration objectives are to determine
sensor bias and scale factors. Additionally, stochastic errors, such as random
noise, must be modeled appropriately. Gaussian distributions are often used
due to their analytical convenience. In the context of Kalman filtering, Gaus-
sian noise models are particularly advantageous since a Gaussian distribution
remains Gaussian after undergoing a linear transformation, which is a funda-
mental property leveraged by Kalman filter algorithms.

4.2 Calibrated Sensor Measurements

In the previous section, the relationship between the ground truth acceleration
and angular velocity and their corresponding measured quantities was estab-
lished (Equations 11-12).

In a typical calibration scenario, the ground truth values are known, as the
sensor is either placed in controlled static positions or moved in a predeter-
mined manner. For instance, when the sensor is placed on a flat surface and
remains stationary, the accelerometer should measure +1g along the vertical
axis, while the readings along the other axes should be zero. Similarly, the
gyroscope measurements should be zero in all directions due to the absence of
rotational motion. By systematically positioning the sensor on different faces,
a dataset of controlled measurements can be collected. If a broader range of
calibration data is required, a turntable can be employed to introduce controlled
rotational motion.
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Regardless of the calibration method used, estimating the sensor parameters
requires solving an optimization problem. To formulate this problem, we in-
vert Equations 11-12, obtaining the following expressions for the calibrated
acceleration and angular velocity.

The ground truth acceleration is extracted by inverting the accelerometer noise
model (Equation 11). This step isolates the true acceleration by compensating
for systematic errors, such as bias and scaling distortions, resulting in a more
reliable measurement for navigation and control applications.

aaa = (I+SSSa +MMMa)
−1(Kaãaa−bbba −TTT a∆T ). (15)

Similarly, by inverting the gyroscope noise model (Equation 12), the calibrated
angular velocity is computed as

ωωω = (I+SSSg +MMMg)
−1(Kgω̃ωω −bbbg −GGGgaaa−TTT g∆T ). (16)

Using the simplified models given in Equations 13-14, the true acceleration
and angular velocity can be estimated as follows:

ωωω = ω̃ωω −bbbg, (17)

aaa = ãaa−bbba. (18)

These equations correct the raw sensor outputs by subtracting the estimated
bias terms, providing a more accurate representation of the actual motion dy-
namics.

Since stochastic noise terms cannot be explicitly measured, they must be fil-
tered out using estimation techniques such as Extended Kalman Filtering (EKF)
or Unscented Kalman Filtering (UKF). These techniques refine sensor readings
in real-time by estimating the underlying states while accounting for uncertain-
ties, leading to improved measurement accuracy.

4.3 Solving for the Calibration Parameters

Upon collecting sufficient data, the error can be defined as:

ea = aaa− ãaa, eg = ωωω − ω̃ωω (19)
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for the accelerometer and gyroscope, respectively.

Once these errors are established, the total error across all sample measure-
ments is formulated as an optimization problem. By initializing the calibration
parameters with some initial estimates, the optimization process seeks to min-
imize the error by determining the optimal calibration parameters.

For accelerometer calibration, the objective function is:

argmin
SSSa,MMMa,bbba,TTT a

∑
i
∥ea,i∥2. (20)

Similarly, for gyroscope calibration, the objective function is:

argmin
SSSg,MMMg,bbbg,GGGg,TTT g

∑
i
∥eg,i∥2. (21)

Various tools in the literature, such as the Ceres Solver and MATLAB tool-
boxes, can be used to solve these optimization problems efficiently (Agarwal,
Mierle, & Others, 2012; The MathWorks, 2023).

5 CONCLUSION

IMUs are indispensable components of mobile robotic systems and play a
critical role in various applications, including augmented reality headsets, au-
tonomous vehicles, satellites, and missile guidance systems, among others.

Like any other sensor, IMUs are inherently noisy. Understanding their internal
working principles is essential for any serious roboticist or engineer working in
estimation and navigation. A thorough comprehension of these details allows
one to interpret sensor measurements accurately and develop effective filtering
and calibration techniques. Without proper handling of sensor noise and im-
perfections through appropriate mathematical models and calibration methods,
system performance may degrade significantly, potentially leading to failure.

This work aims to provide an introduction to MEMS accelerometers and gyro-
scopes, covering their fundamental principles while leaving out many intricate
details due to the vastness of the field and the limited scope of this document.
Nevertheless, this document serves as a concise reference, highlighting the
most crucial aspects of IMU modeling and calibration for practical applica-
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tions.
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